1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
maks197457 [2]
3 years ago
13

The solid right-circular cylinder of mass 500 kg is set into torque-free motion with its symmetry axis initially aligned with th

e fixed spatial line a–a. Due to an injection error, the vehicle’s angular velocity vector ω is misaligned 5◦ (the wobble angle) from the symmetry axis. Calculate to three significant figures the maximum angle φ between fixed line a–a and the axis of the cylinder.

Physics
1 answer:
aivan3 [116]3 years ago
4 0

Answer:

30.95°

Explanation:

We need to define the moment of inertia of cylinder but in terms of mass, that equation say,

A=\frac{1}{12}m(3r^2+l^2)

Replacing the values we have,

A=\frac{1}{12}(500)(3(0.5)^2+(2)^2)A=197.9kg.m^2

At the same time we can calculate the mass moment of intertia of cylinder but in an axial way, that is,

c=\frac{1}{2}mr^2

c=\frac{1}{2}(500)(0.5)^2

c=62.5kg.m^2

Finally we need to find the required angle between the fixed line a-a (I attached an image )

\Phi = 2tan^{-1}\sqrt{\frac{(\frac{A}{cos\gamma})^2-A^2}{c^2}}

Replacing the values that we have,

\Phi = 2tan^{-1}\sqrt{\frac{(\frac{197.9}{cos5\°})^2-197.9^2}{62.5^2}}

\Phi = 2tan^{-1}(\sqrt{0.076634})

\Phi = 2tan^{-1}(0.2768)

\Phi = 2(15.47)

\Phi = 30.95\°

You might be interested in
Emily holds a banana of mass m over the edge of a bridge of height h. She drops the banana and it falls to the river below. Use
bearhunter [10]

Answer:

The mass of the banana is m and it is at height h.

Applying the Law of Conservation of Energy

              Total Energy before fall = Total Energy after fall

                                E_{i}  = E_{f}

Here, total energy is the sum of kinetic energy and potential energy

K.E_{i} + P.E_{i} = K.E_{f} + P.E_{f}       (a)

When banana is at height h, it has

                 K.E_{i} = 0    and    P.E_{i} = mgh          

and when it reaches the river, it has

       K.E_{f}  = 1/2mv^{2}    and   P.E_{f}  = 0

Putting the values in equation (a)

                              0 + mgh = 1/2mv^{2} + 0

                                      mgh = 1/2mv^{2}

<em>cutting 'm' from both sides</em>

<em>                                           </em>gh = 1/2v^{2}

                                          v = \sqrt{2gh}

Hence, the velocity of banana before hitting the water is

                                          v = \sqrt{2gh}

5 0
3 years ago
Light with a frequency of 7.30 x 1014 hz lies in the violet region of the visible spectrum. What is the wavelength of this frequ
Leona [35]

From the theory we know that:

c = λ / T

f = 1 / T

Where:

c = 3.10^{8} / m   (the speed of light)

λ is the wavelengh (in meters)

T is the period (in seconds)

f is the frequency (in Hz)

We were told that:

f = 7.30 . 10^{14}

And we want to find out the value of λ.

c = λ / T  

c = λ . 1/T

Swaping 1/T = f

c = λ . f

λ = c / f

λ = 3 . 10^{8} /  7.30 . 10^{14}

λ = 4.12 10^{-7} m

Response: 4.12 10^{-7} m = 412 nm

:-)

6 0
3 years ago
A horizontal force of 100 N is used to pull a crate, which weighs 500 N, at constant velocity across a horizontal floor. What is
Ilya [14]

Answer:

0.2

Explanation:

Horizontal force=100N

Weight of crate=500 N

We have to find the coefficient of kinetic friction.

Normal ,N=Weight=500N

Horizontal force,F_x=\mu_kN

Where F_x=Horizontal force

N=Normal force

\mu_k=Coefficient of kinetic friction

Substitute the values in the formula

100=\mu_k(500)

\mu_k=\frac{100}{500}=0.2

Hence, the coefficient of kinetic friction =0.2

8 0
3 years ago
Which of the following does not accurately transistors
seropon [69]

Both NPN and PNP transistors consist of a base composed of an N-type material.

4 0
3 years ago
Read 2 more answers
Two blocks connected by a light string are being pulled across a frictionless horizontal tabletop by a hanging 16.2-N weight (bl
Artemon [7]

Newton's second law allows us to find the results for the string tensions are:

  • T₁ = 6.7 N
  • T₂ = 16.54 N

Newton's second law gives a relationship between force, mass and acceleration of bodies

            ∑ F = ma

Where the bold letters indicate vectors, F is the force, m the mass and the acceleration.

Free-body diagrams are representations of the forces applied to bodies without the details of them.

The reference system is a coordinate system with respect to which the forces decompose, in this case the x-axis is parallel to the plane and the positive direction in the direction of movement, the y-axis is perpendicular to the plane.

In the attachment we see a free-body diagram of the three-block system.

Let's apply Newton's second law to each body.

Block C

Y-axis

       W_c -T_2 = m_c a

Block A

X axis  

       T_2 - T_1 - W_a_x = m_a a  

Y axis  

       N_a - W_a_y = 0  

Block B

X axis

      T_1 - W_b_x = m_b a  

Y axis

      N_b - W_b_y =0

Let's  use trigonometry to find the components of the weight.

Block A

         cos θ = \frac{W_a_y}{W_a}  

         sin θ = \frac{W_a_x}{W_a}

         W_a_y = W_a cos \theta

         W_a_x= W_a sin \theta

Block B

        cos θ = \frac{W_b_y}{W_b}

        sin θ =  \frac{W_b_x}{W_b}

        W_b_y = W_b cos \theta \\W_b_x = W_b sin \theta

Let's write our system of equations.

     W_c - T_2 = m_c a \\           T_2 - T_1 - W_a_x = m_a a \\T_1 - W_b_x = m_b a

 

Let's find the acceleration of the bodies, adding the equations.

     W_c - W_a_x - W_b_x = ( m_a+m_b+m_c) a\\  

         

The weight is

    W = mg

Let's  substitute

         (m_c - m_a -m_b ) g \ sin \theta = ( m_c+m_a+m_b)  \ a  \\a= \frac{ m_c-m_a-m_b  }{ m_a+m_b+m_c} \ g sin \theta

Indicate ma mass of the block a ma = 1.00 kg, the mass of the block b mb = 2.2 kg and the weight of the block c Wc = 16.2 N, let's find the mass of block c.

          m_c = Wc / g

          m_c = 16.2 / 9.8

          m_c = 1.65 kg

we substitute the values

          a= \frac{1.65 -2.20 -1.00}{1.65+2.20+1.00} \ 9.8 \ sin \theta  \\a= -0.3096 sin \theta

The negative sign indicates that the system is descending, to be able to give a specified value an angle is needed, they assume that the angle of the ramp is 45º

          a = - 0.3196 sin 45

          a = -0.226 m / s

Taking the acceleration we are going to look for the tensions.

From the equation of block C

           W_c - T_2 = m_c a \\T_2 = m_c ( g-a)\\T_2 = 1.65 ( 9.8 + 0.226)

            T₂ = 16.54 N

From the equation of block B

          T_1 - W_b_x = m_b a\\T_1 = m_b (a + g sin \theta)\\T_1 = 1.00 (-0.226 + 9.8 \ sin 45)

           T₁ = 6.7 N

In conclusion using Newton's second law we can find the results for the string tensions are:

  •  T₁ = 6.7 N
  •  T₂ = 16.54 N

Learn more here:  brainly.com/question/20575355

7 0
3 years ago
Other questions:
  • The movement of particles from high to low concentration. True or False
    12·1 answer
  • Please help!
    5·1 answer
  • If the speed of light in air is 3.00 · 108 m/s (approximately equal to that in a vacuum) and the speed of light in water is 2.25
    12·2 answers
  • You are creating waves in a rope by shaking your hand back and forth. Without changing the distance your hand moves, you begin t
    15·1 answer
  • Crude oil is a mixture of many different components. The extraction of crude oil from the Earth is important, but its refinement
    10·1 answer
  • 9
    6·1 answer
  • A conditioning program should begin at a low to moderate level. True or False
    13·1 answer
  • The flow of electrons through a wire or any conductor is called____.
    10·1 answer
  • Please help me!!!!!!!!!!!!!!!​
    7·1 answer
  • What must occur within a magnetic material before it exhibts magnetic properties?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!