Answer:
The volume that the sample of oxygen would occupy at 25 ° C if the pressure were reduced to 760.0 torr is 40.2 L
Explanation:
Boyle's law establishes the relationship between the pressure and the volume of a gas when the temperature is constant, so that the pressure of a gas in a closed container is inversely proportional to the volume of the container. That is, if the pressure increases, the volume decreases, while if the pressure decreases, the volume increases.
Boyle's law is expressed mathematically as:
Pressure * Volume = constant
or P * V = k
Considering an initial state 1 and a final state 2, it is true:
P1* V1= P2*V2
In this case:
- P1= 20.1 L
- V1= 1520 torr
- P2= 760 torr
- V2= ?
Replacing:
20.1 L* 1520 torr= 760 torr* V2
Solving:

V2= 40.2 L
<em><u>The volume that the sample of oxygen would occupy at 25 ° C if the pressure were reduced to 760.0 torr is 40.2 L</u></em>
<em><u></u></em>
Answer:
Carbon
Explanation:
I just finished this and that's what I got from my periodic table.
when we convert 32.5 lb/in² to atmosphere, the result obtained is 2.21 atm
<h3>Conversion scale</h3>
14.6959 lb/in² = 1 atm
<h3>Data obtained from the question</h3>
- Pressure (in lb/in²) = 32.5 lb/in²
- Pressure (in ATM) =?
<h3>How to convert 32.5 lb/in² to atm</h3>
14.6959 lb/in² = 1 atm
Therefore
32.5 lb/in² = 32.5 / 14.6959
32.5 lb/in² = 2.21 atm
Thus, 32.5 lb/in² is equivalent to 2.21 atm
Learn more about conversion:
brainly.com/question/2139943
#SPJ1