Real, inverted and at the same point of the object
Answer:
The answer is "-72 k".
Explanation:
Please find the complete question in the attached file.
Given point:


Calculating the area:

![=i[8(0)-8(0)]-j[(0-0)]+k[(0-9(8))]\\\\=i[0-0]-j[(0)]+k[(0-72)]\\\\=i[0]-j[(0)]+k[(-72)]\\\\=-72 \ k](https://tex.z-dn.net/?f=%3Di%5B8%280%29-8%280%29%5D-j%5B%280-0%29%5D%2Bk%5B%280-9%288%29%29%5D%5C%5C%5C%5C%3Di%5B0-0%5D-j%5B%280%29%5D%2Bk%5B%280-72%29%5D%5C%5C%5C%5C%3Di%5B0%5D-j%5B%280%29%5D%2Bk%5B%28-72%29%5D%5C%5C%5C%5C%3D-72%20%5C%20k)
Answer:
Approximately
.
Explanation:
<h3>Solve this question with a speed-time plot</h3>
The skateboarder started with an initial speed of
and came to a stop when her speed became
. How much time would that take if her acceleration is
?
.
Refer to the speed-time graph in the diagram attached. This diagram shows the velocity-time plot of this skateboarder between the time she reached the incline and the time when she came to a stop. This plot, along with the vertical speed axis and the horizontal time axis, form a triangle. The area of this triangle should be equal to the distance that the skateboarder travelled while she was moving up this incline until she came to a stop. For this particular question, that area is approximately equal to:
.
In other words, the skateboarder travelled
up the slope until she came to a stop.
<h3>Solve this question with an SUVAT equation</h3>
A more general equation for this kind of motion is:
,
where:
and
are the initial and final velocity of the object,
is the constant acceleration that changed the velocity of this object from
to
, and
is the distance that this object travelled while its velocity changed from
to
.
For the skateboarder in this question:
.
Stephen`s Law:
P = (Sigma) · A · e · T^4
P in = P out
e = 1 for blacktop;
1150 W = (Sigma) · T^4
(Sigma) = 5.669 · 10 ^(-8) W/m²K^4
T^4 = 1150 : ( 5.669 · 10^(-8) )
T^4 = 202.875 · 10^8
![T = \sqrt[4]{202.857 * 10 ^{8} }](https://tex.z-dn.net/?f=T%20%3D%20%20%5Csqrt%5B4%5D%7B202.857%20%2A%2010%20%5E%7B8%7D%20%7D%20)
T = 3.774 · 10² =
377.4 KAnswer: Equilibrium temperature is 377.4 K.