Answer: Option (b) is the correct answer.
Explanation:
It is given that a positive test charge q is released from rest at a distance r away from a charge of +Q and a distance 2r which is away from a charge of +2Q.
Then test charge to the right immediately after being released.
Therefore, the net force will be as follows.
F = 
= 
= 
F =
> 0
Thus, we can conclude that the test charge move to the right immediately after being released.
Answer:
Approximately
. (Assuming that
, and that the tabletop is level.)
Explanation:
Weight of the book:
.
If the tabletop is level, the normal force on the book will be equal (in magnitude) to weight of the book. Hence,
.
As a side note, the
and
on this book are not equal- these two forces are equal in size but point in the opposite directions.
When the book is moving, the friction
on it will be equal to
, the coefficient of kinetic friction, times
, the normal force that's acting on it.
That is:
.
Friction acts in the opposite direction of the object's motion. The friction here should act in the opposite direction of that
applied force. The net force on the book shall be:
.
Apply Newton's Second Law to find the acceleration of this book:
.
Answer:
The second law of thermodynamics states in an isolated system, the entropy (the amount of thermal energy that cannot be converted into mechanical work, also known as the amount of disorder) always increases, therefore, an isolated system always require an external input (new sources) of energy for there to be orderliness or for the available energy of the system to remain constant or increase
Explanation:
We may be positive that an object is in mechanical equilibrium if it is not rotating and experiences no acceleration.
<h3>What is
mechanical equilibrium?</h3>
There are numerous other definitions for mechanical equilibrium that are all mathematically comparable in addition to the definition in terms of force. A system is in equilibrium in terms of momentum if the component motions are all constant. If velocity is constant, the system is in equilibrium in terms of velocity. When an item is in a state of rotational mechanical equilibrium, its angular momentum is preserved and its net torque is zero. More generally, equilibrium is reached in conservative systems at a configuration space location where the gradient of the potential energy concerning the generalized coordinates is zero.
To learn more about mechanical equilibrium, visit:
<u>brainly.com/question/14246949</u>
#SPJ4