Explanation:
Fgravity = G*(mass1*mass2)/D²
G is the gravitational constant throughout the universe.
D is the distance between the 2 objects.
the distance is now quadrupled.
Fgravitynew = G*(mass1*mass2)/(4D)² =
= G*(mass1*mass2)/(16D²) =
= (G*(mass1*mass2)/D²) / 16 = Fgravity/16
the new gravitational force will be 179/16 = 11.1875 units
If Resistors are in series= The equivalent is the sum.
E.g R1 and R2 in series, R = R1 + R2.
If in Parallel, equivalent is Product/sum.
E.g If R1 and R2 in parallel, R = (R1*R2)/(R1+R2)
1.) 60 is parallel with 40 and both are then in series with 20.
60//40 = (60*40)/(60+40) = 2400/100 = 24
Now the 24 is in series with the 20
R = 24 + 20 = 44 ohms.
2.) 80 is in series with 40 and both are then in parallel with 40.
Solving the series, R = 80 + 40 =120.
Parallel: 120//40 = (120*40)/(120+40) = 4800/160 = 30
Equivalent Resistance = 30 ohms.
3.) 100 is in parallel with 100 and both are then in series with the parallel of 50 and 50.
The 1st parallel = (100*100)/(100+100) = 10000/200 = 50
The 2nd parallel = (50*50)/(50+50) = 2500/100 = 25.
Solving the series = 50 + 25 =75 ohms.
Cheers.
To solve this problem it is necessary to apply the concepts related to the Power defined from the Stefan-Boltzmann equations.
The power can be determined as:

Making the relationship for two states we have to

Since the final power is 8 times the initial power then

Substituting,



The temperature increase would then be subject to



The correct option is D, about 68%
Explanation:
heat caoacity and heat is difference
Answer:
Velocity
Explanation:
The gradient= change in velocity
——————————
Change in time