1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
aleksklad [387]
3 years ago
13

According to this graph, how would the lynx population change if a disease killed most of the snowshoe hares?

Engineering
1 answer:
vladimir2022 [97]3 years ago
7 0

Answer:

It would decrease.

Explanation:

I would prefer to do this while looking at the graph.

If a disease killed most of the snowshoe hares, the lynx population would decrease.

It can be inferred that lynx eat hares. If hares die the lynx have less food to eat. With less food to eat, some of them die off and they reproduce less, causing the population to decrease.

Although, it is not that the lynx entirely depend on eating hares only, and it is not that all the hares are extinct. Therefore, the lynx would not become extinct.

You might be interested in
Is a compass a analog or a digital sensor?
ollegr [7]
A compass is a analog sensor
5 0
2 years ago
Explicar el funcionamiento de un multímetro analógico.
Whitepunk [10]

Answer:

Un multímetro analógico funciona como un medidor de bobina móvil de imán permanente (PMMC) para tomar mediciones eléctricas

Explanation:

El multímetro analógico es un medidor o galvanómetro D'Arsonval que funciona según el principio de los medidores de bobina móvil de imán permanente (PMMC)

Un multímetro analógico está formado por un puntero de aguja unido a una bobina móvil colocada entre el polo norte y sur de un imán permanente dispuesto de tal manera que, cuando una corriente eléctrica fluye a través de la bobina, genera una fuerza de campo magnético que interactúa con el imán fuerza de campo de los imanes permanentes que hace que la bobina se mueva junto con el puntero de la aguja sobre un dial graduado

Para controlar el movimiento del puntero de la aguja, de modo que el par requerido para producir una cantidad de movimiento por corriente detectada por el multímetro, se colocan dos resortes a través de la bobina para proporcionar resistencia al movimiento en ambas direcciones y para permitir la calibración del multímetro analógico.

4 0
3 years ago
Select the right answer<br>​
Kruka [31]

Answer:

for 1st question the answer is 5th option.

for 2nd question the answer is 2nd option

hope it helps you mate

please mark me as brainliast

5 0
3 years ago
What does it mean to say that PEER is a data-driven, consumer-centric, and comprehensive system?
Reika [66]

Answer:

have you heard of gnoogle?

Explanation:have you heard of goongle?

3 0
3 years ago
Read 2 more answers
The current in a 20 mH inductor is known to be: 푖푖=40푚푚푚푚푡푡≤0푖푖=푚푚1푒푒−10,000푡푡+푚푚2푒푒−40,000푡푡푚푚푡푡≥0The voltage across the induct
Anni [7]

Answer:

a) The expression for electrical current: i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

The expression for voltage: v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) For t<=0 the inductor is storing energy and for t > 0 the inductor is delivering energy.

Explanation:

The question text is corrupted. I found the complete question on the web and it goes as follow:

The current in a 20 mH inductor is known to be: i = 40 mA at t<=0 and i = A1*e^(-10,000*t) + A2*e^(-40,000*t) A at t>0. The voltage across the inductor (passive sign convention) is -68 V at t = 0.

a. Find the numerical expressions for i and v for t>0.

b. Specify the time intervals when the inductor is storing energy and is delivering energy.

A inductor stores energy in the form of a magnetic field, it behaves in a way that oposes sudden changes in the electric current that flows through it, therefore at moment just after t = 0, that for convenience we'll call t = 0+, the current should be the same as t=0, so:

i = A1*e^(-10,000*(0)) + A2*e^(-40,000*(0))

40*10^(-3) = A1*e^(-10,000*0) + A2*e^(-40,000*0)

40*10^(-3) = (A1)*1 + (A2)*1

40*10^(-3) = A1 + A2

A1 + A2 = 40*10^(-3)

Since we have two variables (A1 and A2) we need another equation to be able to solve for both. For that reason we will use the voltage expression for a inductor, that is:

V = L*di/dt

We have the voltage drop across the inductor at t=0 and we know that the current at t=0 and the following moments after that should be equal, so we can use the current equation for t > 0 to find the derivative on that point, so:

di/dt = d(A1*e^(-10,000*t) + A2*e^(-40,000*t))/dt

di/dt = [d(-10,000*t)/dt]*A1*e^(-10,000*t) + [d(-40,000*t)/dt]*A2*e^(-40,000*t)

di/dt = -10,000*A1*e^(-10,000*t) -40,000*A2*e^(-40,000*t)

By applying t = 0 to this expression we have:

di/dt (at t = 0) = -10,000*A1*e^(-10,000*0) - 40,000*A2*e^(-40,000*0)

di/dt (at t = 0) = -10,000*A1*e^0 - 40,000*A2*e^0

di/dt (at t = 0) = -10,000*A1- 40,000*A2

We can now use the voltage equation for the inductor at t=0, that is:

v = L di/dt (at t=0)

68 = [20*10^(-3)]*(-10,000*A1 - 40,000*A2)

68 = -400*A1 -800*A2

-400*A1 - 800*A2 = 68

We now have a system with two equations and two variable, therefore we can solve it for both:

A1 + A2 = 40*10^(-3)

-400*A1 - 800*A2 = 68

Using the first equation we have:

A1 = 40*10^(-3) - A2

We can apply this to the second equation to solve for A2:

-400*[40*10^(-3) - A2] - 800*A2 = 68

-1.6 + 400*A2 - 800*A2 = 68

-1.6 -400*A2 = 68

-400*A2 = 68 + 1.6

A2 = 69.6/400 = 0.174

We use this value of A2 to calculate A1:

A1 = 40*10^(-3) - 0.174 = -0.134

Applying these values on the expression we have the equations for both the current and tension on the inductor:

i = -0.134*e^(-10,000*t) + 0.174*e^(-40,000*t) A

v = [20*10^(-3)]*[-10,000*(-0.134)*e^(-10,000*t) -40,000*(0.174)*e^(-40,000*t)]

v = [20*10^(-3)]*[1340*e^(-10,000*t) - 6960*e^(-40,000*t)]

v = 26.8*e^(-10,000*t) - 139.2*e^(-40,000*t) V

b) The question states that the current for the inductor at t > 0 is a exponential powered by negative numbers it is expected that its current will reach 0 at t = infinity. So, from t =0 to t = infinity the inductor is delivering energy. Since at time t = 0 the inductor already has a current flow of 40 mA and a voltage, we can assume it already had energy stored, therefore for t<0 it is storing energy.

8 0
3 years ago
Other questions:
  • a. A crude oil pipe’s radius is reduced by 5%. What is the corresponding percentage change in the pressure drop per unit length?
    8·1 answer
  • Air enters the compressor of an ideal cold air-standard Brayton cycle at 100 kPa, 300 K, with a mass flow rate of 6 kg/s. The co
    11·1 answer
  • Question 5
    7·2 answers
  • 1 kg of saturated steam at 1000 kPa is in a piston-cylinder and the massless cylinder is held in place by pins. The pins are rem
    5·1 answer
  • A student proposes a complex design for a steam power plant with a high efficiency. The power plant has several turbines, pumps,
    6·1 answer
  • A long bone is subjected to a torsion test. Assume that the inner diameter is 0.375 in. and the outer diameter is 1.25 in., both
    14·1 answer
  • You are traveling along an interstate highway at 32.0 m/s (about 72 mph) when a truck stops suddenly in front of you. You immedi
    11·1 answer
  • Problem 89:A given load is driven by a 480 V six-pole 150 hp three-phase synchronous motor with the following load and motor dat
    11·1 answer
  • Although many countries have issues with soil erosion due to deforestation, some of the most serious effects are seen
    8·1 answer
  • Characteristics of 3 types of soil​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!