Answer:
x = 1.00486 m
Explanation:
The complete question is:
" The potential energy between two atoms in a particular molecule has the form U(x) =(2.6)/x^8 −(5.1)/x^4 where the units of x are length and the num- bers 2.6 and 5.1 have appropriate units so that U(x) has units of energy. What is the equilibrium separation of the atoms (that is the distance at which the force between the atoms is zero)? "
Solution:
- The correlation between force F and energy U is given as:
F = - dU / dx
F = - d[(2.6)/x^8 −(5.1)/x^4] / dx
F = 20.8 / x^9 - 20.4 / x^5
- The equilibrium separation distance between atoms is given when Force F is zero:
0 = 20.8 / x^9 - 20.4 / x^5
0 = 20.8 - 20.4*x^4
x^4 = 20.8/20.4
x = ( 20.8/20.4 )^0.25
x = 1.00486 m
Answer:
The diagram represents two charges, q1 and q2, separated by a distance d. Which change would produce the greatest increase in the electrical force between the two charges? *
Explanation:
doubling charge q1, only
Answer Explanation :
Poiseuille equation: this equation is used for non ideal flow this is used for the calculation of pressure in laminar flow it is physical law we know that fluid in laminar flow, flows across the pipe whose diameter is larger than the length of pipe
in mathematical form the equation can be expressed as
Q = 
where η is the cofficient of viscosity
now if we assume a small sphere of radius a is suspended freely in the plane of the laminar flow then for assuring that the sphere does not migrate with the flow we have to calculate the rate of flow of the liquid
I think the answer is D
Hope this helps :D
Answer:
The loop of coils - Electromagnetic induction is caused a changing magnetic field moving thru a closed loop(s) of coils