Answer:
the acceleration of the airplane is 5.06 x 10⁻³ m/s²
Explanation:
Given;
initial velocity of the airplane. u = 34.5 m/s
distance traveled by the airplane, s = 46,100 m
final velocity of the airplane, v = 40.7 m/s
The acceleration of the airplane is calculated from the following kinematic equation;
v² = u² + 2as

Therefore, the acceleration of the airplane is 5.06 x 10⁻³ m/s²
There are creases. Or just origami
<span>a) 1960 m
b) 960 m
Assumptions.
1. Ignore air resistance.
2. Gravity is 9.80 m/s^2
For the situation where the balloon was stationary, the equation for the distance the bottle fell is
d = 1/2 AT^2
d = 1/2 9.80 m/s^2 (20s)^2
d = 4.9 m/s^2 * 400 s^2
d = 4.9 * 400 m
d = 1960 m
For situation b, the equation is quite similar except we need to account for the initial velocity of the bottle. We can either assume that the acceleration for gravity is negative, or that the initial velocity is negative. We just need to make certain that the two effects (falling due to acceleration from gravity) and (climbing due to initial acceleration) counteract each other. So the formula becomes
d = 1/2 9.80 m/s^2 (20s)^2 - 50 m/s * T
d = 1/2 9.80 m/s^2 (20s)^2 - 50m/s *20s
d = 4.9 m/s^2 * 400 s^2 - 1000 m
d = 4.9 * 400 m - 1000 m
d = 1960 m - 1000 m
d = 960 m</span>
I’m pretty sure it does most of the time ig