Answer:
<u>a</u><u>.</u><u> </u><u>True</u><u>.</u>
Explanation:
Only primary and secondary alcohols can oxidise to give an aldehyde. But a weak oxidizing agent must be used to prevent formation of a carboxylic acid or ketone.
weak oxidizing agents: Chromyl chloride, silver/oxygen/500°C
take an example of <u>e</u><u>t</u><u>h</u><u>a</u><u>n</u><u>o</u><u>l</u><u>:</u>
<u>
</u>
<u>
</u>
<u>B</u><u>y</u><u> </u><u>o</u><u>z</u><u>o</u><u>n</u><u>o</u><u>l</u><u>y</u><u>s</u><u>i</u><u>s</u><u>:</u>
Here, reactants are Ozone gas, Carbon tetrachloride at a temperature (<20°C), ethanoic acid, zinc and water.
take an example of propanol:
if it undergoes ozonolysis, it gives ethanal and methanal.
Water, Sun/Heat, and Carbon Dioxicide/Air
Sorry About Spelling!
Answer:
a) The volume is 5.236x10⁻¹³L
b) The molarity of a single virus is 1.91x10¹² mol/L
c) The molarity for a 100 virus particles is 1.91x10¹⁴ mol/L
Explanation:
a) Given:
D = diameter of the cell = 10 μm
r = radius = 10/2 = 5 μm
The volume of the spherical cell is equal:

If 1 μm³ = 1x10⁻¹⁵L, then 523.6 μm³ = 5.236x10⁻¹³L
b) The molarity is:

For a single virus within the cell

c) For a 100 virus particles the molarity is:

With reference to radioactive material, half-life is the time required to 50% depletion of initial amount of material.
Given: Initial amount of radioactive material = 40 g
Half life = 4 days.
Therefore, After 4 days, amount of compound left = 40/2 = 20 g
After 8 days, i.e 2 half-life, amount of compound left = 20/2 = 10 g
Finally after 12 days, i.e. 3 half-life, amount of compound left = 10/2 = 5 g
Thus, 5 <span>grams will remain after 12 days</span>
Answer:
Renewable Resources: are considered unlimited, are replaced faster than used.
Nonrenewable Resources: are used more quickly than replaced, have fixed amounts, cannot be replaced in a short time.
Explanation:
Renewable resources are natural resources that are able to naturally regenerate themselves, hence, they are considered to be unlimited. They are usually replaced faster than they are used because they have a short regeneration time. A good example is the solar energy.
Nonrenewable resources are those natural resources that cannot naturally regenerate and when they do, it takes a very long time (usually millions of years). They are therefore used at a much faster rate than they are being replaced and their natural deposits are more or less fixed due to the long regeneration time. A good example is the crude oil deposit.
Hence:
Renewable Resources: are considered unlimited, are replaced faster than used.
Nonrenewable Resources: are used more quickly than replaced, have fixed amounts, cannot be replaced in a short time.