1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVETLANKA909090 [29]
3 years ago
7

Thread cancellation is : Group of answer choices c) the task of terminating a thread before it has completed a) the task of dest

roying the thread once its work is done b) the task of removing a thread once its work is done d) none of the mentioned
Engineering
1 answer:
Mariana [72]3 years ago
3 0

Answer:

Thread cancellation is the task of terminating a thread before it has completed.

Explanation:

In computers and technology, the concept of thread cancellation explains how a thread can be stopped while it is still in the process of execution.

It can also be done in such a way that it checks at intervals if it can safely cancel itself before it then proceeds with the cancellation.

You might be interested in
How to get on your screen on 2k20 in every mode
VashaNatasha [74]
D pad or rb or lb hop this helps
5 0
3 years ago
Read 2 more answers
What type of companies would employ in mechanics engineering​
Alex73 [517]
What do y’all do when ya girl go eat lunch and eat it and eat
3 0
3 years ago
The nuclear reactions resulting from thermal neutron absorption in boron and cadmium are 10B5 + 1 n0 ï  7Li3 + 4He2 113Cd48 + 1
kirill115 [55]

Solution :

The nuclear reaction for boron is given as :

$^{10}\textrm{B}_5 + ^{1}\textrm{n}_0 \rightarrow ^{7}\textrm{Li}_3 + ^{4}\textrm{He}_2$

And the reaction for Cadmium is :

$^{113}\textrm{Cd}_48 + ^{1}\textrm{n}_0 \rightarrow ^{114}\textrm{Cd}_48 + \gamma [5 \ \textrm{MeV}]$

We know that it is easier that to shield or stop an alpha particle (i.e. He nucli) as they can be stopped or obstructed by only a few centimetres of the material. However, the gamma rays ( γ ) can penetrate through the material to a greater distance. Therefore, we can choose the first one.

6 0
3 years ago
Three tool materials (high-speed steel, cemented carbide, and ceramic) are to be compared for the same turning operation on a ba
Tpy6a [65]

Answer:

Among all three tools, the ceramic tool is taking the least time for the production of a batch, however, machining from the HSS tool is taking the highest time.

Explanation:

The optimum cutting speed for the minimum cost

V_{opt}= \frac{C}{\left[\left(T_c+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]^n}\;\cdots(i)

Where,

C,n = Taylor equation parameters

T_h =Tool changing time in minutes

C_e=Cost per grinding per edge

C_m= Machine and operator cost per minute

On comparing with the Taylor equation VT^n=C,

Tool life,

T= \left[ \left(T_t+\frac{C_e}{C_m}\right)\left(\frac{1}{n}-1\right)\right]}\;\cdots(ii)

Given that,  

Cost of operator and machine time=\$40/hr=\$0.667/min

Batch setting time = 2 hr

Part handling time: T_h=2.5 min

Part diameter: D=73 mm =73\times 10^{-3} m

Part length: l=250 mm=250\times 10^{-3} m

Feed: f=0.30 mm/rev= 0.3\times 10^{-3} m/rev

Depth of cut: d=3.5 mm

For the HSS tool:

Tool cost is $20 and it can be ground and reground 15 times and the grinding= $2/grind.

So, C_e= \$20/15+2=\$3.33/edge

Tool changing time, T_t=3 min.

C= 80 m/min

n=0.130

(a) From equation (i), cutting speed for the minimum cost:

V_{opt}= \frac {80}{\left[ \left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]^{0.13}}

\Rightarrow 47.7 m/min

(b) From equation (ii), the tool life,

T=\left(3+\frac{3.33}{0.667}\right)\left(\frac{1}{0.13}-1\right)\right]}

\Rightarrow T=53.4 min

(c) Cycle time: T_c=T_h+T_m+\frac{T_t}{n_p}

where,

T_m= Machining time for one part

n_p= Number of pieces cut in one tool life

T_m= \frac{l}{fN} min, where N=\frac{V_{opt}}{\pi D} is the rpm of the spindle.

\Rightarrow T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 47.7}=4.01 min/pc

So, the number of parts produced in one tool life

n_p=\frac {T}{T_m}

\Rightarrow n_p=\frac {53.4}{4.01}=13.3

Round it to the lower integer

\Rightarrow n_p=13

So, the cycle time

T_c=2.5+4.01+\frac{3}{13}=6.74 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times6.74+\frac{3.33}{13}=\$4.75/pc

(e) Total time to complete the batch= Sum of setup time and production time for one batch

=2\times60+ {50\times 6.74}{50}=457 min=7.62 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times4.01}{457}=0.4387=43.87\%

Now, for the cemented carbide tool:

Cost per edge,

C_e= \$8/6=\$1.33/edge

Tool changing time, T_t=1min

C= 650 m/min

n=0.30

(a) Cutting speed for the minimum cost:

V_{opt}= \frac {650}{\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]^{0.3}}=363m/min [from(i)]

(b) Tool life,

T=\left[ \left(1+\frac{1.33}{0.667}\right)\left(\frac{1}{0.3}-1\right)\right]=7min [from(ii)]

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

T_m= \frac{\pi D l}{fV_{opt}}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 363}=0.53min/pc

n_p=\frac {7}{0.53}=13.2

\Rightarrow n_p=13 [ nearest lower integer]

So, the cycle time

T_c=2.5+0.53+\frac{1}{13}=3.11 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times3.11+\frac{1.33}{13}=\$2.18/pc

(e) Total time to complete the batch=2\times60+ {50\times 3.11}{50}=275.5 min=4.59 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.53}{275.5}=0.0962=9.62\%

Similarly, for the ceramic tool:

C_e= \$10/6=\$1.67/edge

T_t-1min

C= 3500 m/min

n=0.6

(a) Cutting speed:

V_{opt}= \frac {3500}{\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]^{0.6}}

\Rightarrow V_{opt}=2105 m/min

(b) Tool life,

T=\left[ \left(1+\frac{1.67}{0.667}\right)\left(\frac{1}{0.6}-1\right)\right]=2.33 min

(c) Cycle time:

T_c=T_h+T_m+\frac{T_t}{n_p}

\Rightarrow T_m=\frac{\pi \times 73 \times 250\times 10^{-6}}{0.3\times 10^{-3}\times 2105}=0.091 min/pc

n_p=\frac {2.33}{0.091}=25.6

\Rightarrow n_p=25 pc/tool\; life

So,

T_c=2.5+0.091+\frac{1}{25}=2.63 min/pc

(d) Cost per production unit:

C_c= C_mT_c+\frac{C_e}{n_p}

\Rightarrow C_c=0.667\times2.63+\frac{1.67}{25}=$1.82/pc

(e) Total time to complete the batch

=2\times60+ {50\times 2.63}=251.5 min=4.19 hr.

(f) The proportion of time spent actually cutting metal

=\frac{50\times0.091}{251.5}=0.0181=1.81\%

3 0
3 years ago
How do you extablish a chain of dimensions​
kap26 [50]

Answer:

Certamente você conhece três dimensões: comprimento, largura e profundidade. Além disso, quando se pensa um pouco fora da caixa também seria possível adicionar a dimensão do tempo.

Provavelmente, algumas pessoas viajam na maionese quando toca-se nesse assunto. Vem em suas mentes universos paralelos e até mesmo realidades alternativas. Mas também não se trata disso.

Explanation:

Basicamente as dimensões são as facetas do que nós percebemos a ser realidade. Existem muitos debates sobre dimensões na física. Um dos que mais chamam a atenção se chama Teoria das Cordas.

r

5 0
3 years ago
Other questions:
  • To make 1000 containers of ice cream you need: 600 gallons of milk, 275 gallons of cream, and 120 gallons of flavor. Each ingred
    12·1 answer
  • Now, suppose that you have a balanced stereo signal in which the left and right channels have the same voltage amplitude, 500 mV
    8·1 answer
  • How do Solar Engineers Help Humans?<br> (2 or more sentences please)
    9·1 answer
  • The four strokes in a four stroke cycle engine in proper order.
    7·1 answer
  • Argon is compressed in a polytropic process with n = 1.2 from 100 kPa and 30°C to 1200 kPa in a piston–cylinder device. Determin
    14·1 answer
  • A kernel-level thread wishes to acquire a mutex lock declared as global in the process. True or False: the function call used be
    6·1 answer
  • How much metal can be removed from a cracked drum to restore surface
    9·2 answers
  • The irreversible losses in the penstock of a hydroelectric dam are estimated to be 7 m. The elevation difference between the res
    14·1 answer
  • 1. Lea y analice la Norma ISO 16949 - Calidad en la industria automotriz, luego se ubica en los requisitos particulares, usted m
    12·1 answer
  • 1. Band saw lower wheel does not require a guard * true or false 2. Band saw upper guide should be adjusted to within 1/8" of th
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!