The intensity of the magnetic force F experienced by a charge q moving with speed v in a magnetic field of intensity B is equal to

where

is the angle between the directions of v and B.
1) Re-arranging the previous formula, we can calculate the value of the magnetic field intensity. The charge is

. In this case, v and B are perpendicular, so

, therefore we have:

2) In this second case, the angle between v and B is

. The charge is now

, and the magnetic field is the one we found in the previous part, B=2.8 T, so we can find the intensity of the force experienced by this second charge:
Answer:
v=v0 - gt
Explanation:
The equation for velocity is
v=v0 - gt
where v0=14m/s, g=10m/s^2.
in 1 second:
v=14-10=4m/s
it is positive so direction is upwards
in 2 seconds:
v=14-20=-6m/s
it is negative so direction is downwards
Answer:
3: I can´t see the text/image, but it depend on the mass and the force applied to the ball, if both are too high, it will be harder to make a home run. (Second law)
4:It would be easier to make a home run because there is no interruption between the ball and the space the same travels. (Third law)
Explanation:
2 seconds,,,,,,,,,,,,,,,,,,,,,,,