Answer:
105 m/s
Explanation:
Given that the speed of train A,
= 45 m/s from west to east.
Speed of train B,
= 60 m/s from east to west.
Train B is moving in the opposite direction with respect to the speed of train A. Assuming that the speed from east to west direction is positive.
So, the speed of train A from east to west= - 45 m/s
The speed of train B w.r.t train A
m/s
Hence, the speed of train B w.r.t train A is 105 m/s from east to west.
With constant angular acceleration
, the disk achieves an angular velocity
at time
according to

and angular displacement
according to

a. So after 1.00 s, having rotated 21.0 rad, it must have undergone an acceleration of

b. Under constant acceleration, the average angular velocity is equivalent to

where
and
are the final and initial angular velocities, respectively. Then

c. After 1.00 s, the disk has instantaneous angular velocity

d. During the next 1.00 s, the disk will start moving with the angular velocity
equal to the one found in part (c). Ignoring the 21.0 rad it had rotated in the first 1.00 s interval, the disk will rotate by angle
according to

which would be equal to
