Answer:
Part a)
E = 0
Part b)

Part c)
Electric field inside the conductor is again zero

Part d)

Explanation:
Part a)
conducting sphere is of radius
R = 2 cm
so electric field inside any conductor is always zero
So electric field at r = 1 cm
E = 0
Part b)
Now at r = 3 cm
By Gauss law



Part c)
Again when we use r = 4.50 cm
then we will have
Electric field inside the conductor is again zero

Part d)
Now at r = 7 cm
again by Gauss law



Answer:
Explanation:
7a) t = d/v = 100/45cos14.5 = 2.29533...= 2.30 s
7b) h = ½(9.81)(2.29533/2)² = 6.46056... = 6.45 m
or
h = (45sin14.5)² / (2(9.81)) = 6.47 m
which rounds to the same 6.5 m when limiting to the two significant digits of the initial velocity.
<h2>The distance between students is 2.46 m</h2>
Explanation:
The force of attraction due to Newton's gravitation law is
F = 
Here G is the gravitational constant
m₁ is the mass of one student
m₂ is the mass of second student .
and r is the distance between them
Thus r = 
If we substitute the values in the above equation
r = 
= 2.46 m
Carbohydrates, in cellular respiration.