Answer:
1.4 m
Explanation:
v = Speed of sound in water = 1400 m/s
f = Frequency of sound = 1000 Hz
= Wavelength
When we multiply the frequency and the wavelength of a wave we get the velocity of sound in that medium

The wavelength of the sound waves in water is 1.4 m
At the top of the mountain, when he tightens the cap onto the bottole, there is some water and some air inside the bottle. Then he brings the bottle down to the base of the mountain.
The pressure on the outside of the bottle is greater than it was when he put the cap on. If anything could get out of the bottlde, it would. But it can't . . . the cap is on too tight. So all the water and all the air has to stay inside, and anything that can get squished into a smaller space has to get squished into a smaller space.
The water is pretty much unsquishable.
Biut the air in there can be <em>COMPRESSED</em>. The air gets squished into a smaller space, and the bottle wrinkles in slightly.
The answer is c. the force of his swing
At the time of the impact, there is a collision between two bodies moving in opposite directions.
The force exerted on the ball causes the change of velocity.
The angular velocity, ω=
2π/t; t = 24 hrs = 24 x 3600 seconds = 86400 s
ω = 7.27 x 10⁻⁵
v = ωr
= 7.27 x 10⁻⁵ x 3242.8 x 1.6 x 1000 (converting miles to meters)
= 377.2 m/s
Answer:
The answer is A Ruler and Balance
Explanation: