Answer:

Explanation:
Hello!
In this case, since the reaction between phosphorous and oxygen to form diphosphorous pentoxide is:

Thus, since phosphorous is in excess and oxygen and diphosphorous pentoxide are in a 5/2:1 mole ratio, we can compute the maximum moles of product as shown below:

Best regards!
Answer:

Explanation:
This question asks us to find the temperature change given a volume change. We will use Charles's Law, which states the volume of a gas is directly proportional to the temperature. The formula is:

The volume of the gas starts at 250 milliliters and the temperature is 137 °C.

The volume of the gas is increased to 425 milliliters, but the temperature is unknown.

We are solving for the new temperature, so we must isolate the variable T₂. First, cross multiply. Multiply the first numerator and second denominator, then multiply the first denominator and second numerator.

Now the variable is being multiplied by 250 milliliters. The inverse of multiplication is division. Divide both sides of the equation by 250 mL.


The units of milliliters (mL) cancel.



The temperature changes to <u>232.9 degrees Celsius.</u>
When the work is being done, it is likely that there is an energy being enforced and when the energy is being enforced, it is likely that the energy present is being transferred in order for the work to be able to be able to be exterted upon
The s sublevel has only one orbital
<h3><u>Answer;</u></h3>
10.80 ° C
<h3><u>Explanation;</u></h3>
From the information given;
Initial temperature of water = 24.85°C
Final temperature of water = 35.65°C
Mass of water = 1000 g
The specific heat of water ,c = 4.184 J/g °C.
The heat capacity of the calorimeter = 695 J/ °C
Change in temperature ΔT = 35.65°C - 24.85°C
= 10.80°C