Answer:
Increasing the surface area of the reactants
Explanation:
An increase in surface area of the reactant will always cause an increase in the rate of reaction. This is so because, an increase in the surface area of the reactant will cause the reactant particles to collide effectively thereby bringing about an increase in the reaction rate.
Collision theory suggests that for a reaction to occur, the reactant particles must collide with the right orientation. As the surface area of the reactants are increased, the reactants particles collide more with the right orientation bringing about definite increase in the rate of reaction.
I'm not exactly sure which one but I do know that an acid and a base react in a aqueous solution to form water, so i would probably eliminate the ones that aren't aqueous solutions.
1. C
2. C
3. In elastic deformation, the deformed body returns to its original shape and size after the stresses are gone. In ductile deformation, there is a permanent change in the shape and size but no fracturing occurs. In brittle deformation, the body fractures after the strength is above the limit.
4. Normal faults are faults where the hanging wall moves in a downward force based on the footwall; they are formed from tensional stresses and the stretching of the crust. Reverse faults are the opposite and the hanging wall moves in an upward force based on the footwall; they are formed by compressional stresses and the contraction of the crust. Thrust faults are low-angle reverse faults where the hanging wall moves in an upward force based on the footwall; they are formed in the same way as reverse faults. Last, Strike-slip faults are faults where the movement is parallel to the crust of the fault; they are caused by an immense shear stress.
I hope this helped! These are COMPLEX questions though! =D