Momentum is (mass) times (speed), so nothing that is at rest has any momentum. If the battleship is at rest, then a mosquito in flight, a leaf falling from a tree, and your speedy baseball each have more momentum than the ship has.
Protons have a positive charge which is indicated by a + sign.
Hence, the answer is C.
The student's shoulder supports the weight of the bag.
<h3>What is the free body diagram?</h3>
Free-body diagrams are utilized to display the relative direction and strength of all forces that are being applied to an item in a certain scenario. A unique illustration of the geometric diagrams that were covered in a previous lesson is the free-body diagram. We will make use of these graphics throughout the entire study of physics.
A university student is carrying a backpack. One strap is hanging the rucksack immobile from one shoulder.
The weight of the backpack is balanced by the shoulder of the student.
The free-body diagram is attached below.
More about the free body diagram link is given below.
brainly.com/question/24087893
#SPJ4
Answer:
6 m/s
Explanation:
Given that :
mass of the block m = 200.0 g = 200 × 10⁻³ kg
the horizontal spring constant k = 4500.0 N/m
position of the block (distance x) = 4.00 cm = 0.04 m
To determine the speed the block will be traveling when it leaves the spring; we applying the work done on the spring as it is stretched (or compressed) with the kinetic energy.
i.e 





v = 6 m/s
Hence,the speed the block will be traveling when it leaves the spring is 6 m/s
To solve this problem we will use the definition of the kinematic equations of centrifugal motion, using the constants of the gravitational acceleration of the moon and the radius of this star.
Centrifugal acceleration is determined by

Where,
v = Velocity
r = Radius
From the given data of the moon we know that gravity there is equivalent to

While the radius of the moon is given by

If we rearrange the function to find the speed we will have to



The speed for this to happen is 1.7km/s