Answer:
The answer for the above statement is:
C. High-visibility clothing is important to wear in areas with moving vehicles.
because in bright clothes you are easier to see, so people driving can see you.
Explanation:
Answer:
Correct answer: t = 2.86 seconds
Explanation:
We first use this formula
V² - V₀² = 2 a d
where V is the final velocity (speed), V₀ the initial velocity (speed),
a the acceleration and d the distance.
We will calculate the acceleration from this formula
a = (V² - V₀²) / (2 d) = (2.5² - 1²) / (2 · 5) = (6.25 - 1) / 10 = 5.25 / 10
a = 0.525 m/s²
then we use this formula
V = V₀ + a t => t = (V - V₀) / a = (2.5 - 1) / 0.525 = 1.5 / 0.525 = 2.86 seconds
t = 2.86 seconds
God is with you!!!
.
<h3>Explanation</h3>
The Stefan-Boltzmann Law gives the energy radiation <em>per unit area</em> of a black body:

where,
the total power emitted,
the surface area of the body,
the Stefan-Boltzmann Constant, and
the temperature of the body in degrees Kelvins.
.
.
.
Keep as many significant figures in
as possible. The error will be large when
is raised to the power of four. Also, the real value will be much smaller than
since the emittance of a human body is much smaller than assumed.
Answer:
A & D
Explanation:
A single-displacement reaction is a chemical reaction whereby one element is substituted for another one in a compound and thereby generating a new element and also a new compound as products.
From the options, only options A & D fits this definition of single-displacement reactions.
For option D: Both left and hand and right hand sides each have one element and one compound. We can see that K is substituted from KBr to join Cl to form KCl and Br2 on the right hand side.
For option A: Both left and hand and right hand sides each have one element and one compound. We can see that OH is substituted from 2H2O to join Mg to form Mg(OH)2 and H2 on the right hand side.
The other options are not correct because they don't involve only and element and a compound on each side of the reaction.
From the average speed you can fix an equation:
Average speed = distance / time
You know the average speed = 65.1 kg / h, then
65.1 = distance / total time,
where total time is the time traveling plus 22.0 minutes
Call t the time treavelling and pass 22 minutes to hours:
65.1 = distance / [t + 22/60] ==> distance = [t + 22/60]*65.1
From the constant speed, you can fix a second equation
Constant speed = distance / time traveling
94.5 = distance / t ==> distance = 94.5 * t
The distance is the same in both equations, then you have:
[t +22/60] * 65.1 = 94.5 t
Now you can solve for t.
65.1t + 22*65.1/60 = 94.5t
94.5t - 65.1t = 22*65.1/60
29.4t = 23.87
t = 23.87 / 29.4
t = 0.812 hours
distance = 94.5 km/h * 0.812 h = 76.7 km
Answers: 1) 0.81 hours, 2) 76.7 km