<u>Answer:</u> The initial temperature of the system comes out to be 147 °C
<u>Explanation:</u>
To calculate the initial temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,

where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:

Putting values in above equation, we get:

Converting the temperature from kelvins to degree Celsius, by using the conversion factor:


Hence, the initial temperature of the system comes out to be 147 °C
Answer:
The spring constant of the spring is 205.42 N/m.
Explanation:
Springs have their own natural "spring constants" that define how stiff they are. The letter k is used for the spring constant, and it has the units N/m.
k = -F/x
The period of a spring-mass system is proportional to the square root of the mass and inversely proportional to the square root of the spring constant.
Given:
mass of object in SHM = m = 0.30 kg
Time period of the spring mass system = 0.24s
Spring constant = k ?
Finding 'k' using Time period 'T':
We know that
Answer:
The particles that carry charge through wires in a circuit are mobile electrons. The electric field direction within a circuit is by definition the direction that positive test charges are pushed. Thus, these negatively charged electrons move in the direction opposite the electric field.
Explanation:
Answer:

Explanation:
Let assume that the solid cylinder rolls down a frictionless incline. The translational speed can be found by using the Principle of Energy Conservation and the Work-Energy Theorem:


The translational speed is:


