F = 1440 N. The repulsion force between two identical charges, each -8.00x10⁻⁵C separated by a distance of 20.0 cm is 1440 N.
The easiest way to solve this problem is using Coulomb's Law given by the equation
, where k is the constant of proportionality or Coulomb's constant, q₁ and q₂ are the charges magnitude, and r is the distance between them.
We have to identical charges of -8.00x10⁻⁵C, are separated by a distance of 20.0 cm, and we need to know the force of repulsion between the charges.
First, we have to convert 20.0 cm to meters.
(20.0 cm x 1m)/100cm = 0.20 m
Using the Coulomb's Law equation:


Answer:
12 kg
Explanation:
Momentum before collision = momentum after collision
m₁ u₁ + m₂ u₂ = m₁ v₁ + m₂ v₂
After the collision, they have the same velocity, so v₁ = v₂ = v:
m₁ u₁ + m₂ u₂ = m₁ v + m₂ v
m₁ u₁ + m₂ u₂ = (m₁ + m₂) v
We know that m₁ = 6 kg, u₂ = 0 m/s, and v = u₁ / 3.
(6 kg) u₁ + m₂ (0 m/s) = (6 kg + m₂) (u₁ / 3)
(6 kg) u₁ = (6 kg + m₂) (u₁ / 3)
6 kg = (6 kg + m₂) (1/3)
18 kg = 6 kg + m₂
m₂ = 12 kg
Answer:
Vf = 4.77 m/s
Explanation:
During the downward motion we can easily find the final velocity or the velocity with which the ball hits the ground, by using third equation of motion. The third equation of motion is given as follows:
2gh = Vf² - Vi²
where,
g = acceleration due to gravity = 9.8 m/s²
h = height = 1.16 m
Vf = Final Velocity of Ball = ?
Vi = Initial Velocity of Ball = 0 m/s (Since, ball was initially at rest)
Therefore, using these values in the equation, we get:
(2)(9.8 m/s²)(1.16 m) = Vf² - (0 m/s)²
Vf = √(22.736 m²/s²)
<u>Vf = 4.77 m/s</u>
Other than for the chemical symbol, the electron dot diagram for silicon would be the same as it was for carbon.
The reason for this is because electron dot diagrams are used to represent the electrons in the outermost, or valence, shell of an atom. In a group of the periodic table, all of the elements have the same number of valence shell electrons. This means that all elements belonging to the same group have the same electron dot diagram, except for the symbol of the element that is within the diagram.