1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
marusya05 [52]
3 years ago
15

Theory that earth processes occurring today are similar to those that occurred in the past whats the word

Physics
1 answer:
Studentka2010 [4]3 years ago
4 0
Its uniformitarianism.
You might be interested in
The grains found in igneous rock:
kondor19780726 [428]
Option c. are large

Igneous rocks are crystalline  solids which are formed after the magma cools. The sizes vary greatly depending on how quickly the magma cooled. The slower the cooling, the larger the crystals in the final rock. They cooled at depth in the crust  where they were insulated by layers of rock and sediment.
3 0
3 years ago
Read 2 more answers
Help me on this question
nikitadnepr [17]
Adjust the height of the wooden rod so that it just touches the surface of the water. Switch on the lamp and motor and adjust the speed of the motor until low frequency waves can be clearly observed... Count the number of waves passing a point in ten seconds then Divide by ten to record frequency.
6 0
3 years ago
Since friction is a force,<br> what unit is friction<br> measured In???
dimaraw [331]
It would be measured in newtons :)
4 0
3 years ago
Read 2 more answers
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15
Oksanka [162]

1) 5.5 N

When the ball is at the bottom of the circle, the equation of the forces is the following:

T-mg = m\frac{v^2}{R}

where

T is the tension in the string, which points upward

mg is the weight of the string, which points downward, with

m = 0.158 kg being the mass of the ball

g = 9.8 m/s^2 being the acceleration due to gravity

m \frac{v^2}{R} is the centripetal force, which points upward, with

v = 5.22 m/s being the speed of the ball

R = 1.1 m being the radius of the circular trajectory

Substituting numbers and re-arranging the formula, we find T:

T=mg+m\frac{v^2}{R}=(0.158 kg)(9.8 m/s^2)+(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=5.5 N

2) 3.9 N

When the ball is at the side of the circle, the only force acting along the centripetal direction is the tension in the string, therefore the equation of the forces becomes:

T=m\frac{v^2}{R}

And by substituting the numerical values, we find

T=(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=3.9 N

3) 2.3 N

When the ball is at the top of the circle, both the tension and the weight of the ball point downward, in the same direction of the centripetal force. Therefore, the equation of the force is

T+mg=m\frac{v^2}{R}

And substituting the numerical values and re-arranging it, we find

T=m\frac{v^2}{R}-mg=(0.158 kg)\frac{5.22 m/s)^2}{1.1 m}-(0.158 kg)(9.8 m/s^2)=2.3 N

4) 3.3 m/s

The minimum velocity for the ball to keep the circular motion occurs when the centripetal force is equal to the weight of the ball, and the tension in the string is zero; therefore:

T=0\\mg = m\frac{v^2}{R}

and re-arranging the equation, we find

v=\sqrt{gR}=\sqrt{(9.8 m/s^2)(1.1 m)}=3.3 m/s

7 0
3 years ago
A 4.00-m long rod is hinged at one end. The rod is initially held in the horizontal position, and then released as the free end
Natalka [10]

Answer:

The angular acceleration α = 14.7 rad/s²

Explanation:

The torque on the rod τ = Iα where I = moment of inertia of rod = mL²/12 where m =mass of rod  and L = length of rod = 4.00 m. α = angular acceleration of rod

Also, τ = Wr where W = weight of rod = mg and r = center of mass of rod = L/2.

So Iα = Wr

Substituting the value of the variables, we have

mL²α/12 = mgL/2

Simplifying by dividing through by mL, we have

mL²α/12mL = mgL/2mL

Lα/12 = g/2

multiplying both sides by 12, we have

Lα/12 × 12 = g/2 × 12

αL = 6g

α = 6g/L

α = 6 × 9.8 m/s² ÷ 4.00 m

α = 58.8 m/s² ÷ 4.00 m

α = 14.7 rad/s²

So, the angular acceleration α = 14.7 rad/s²

5 0
3 years ago
Other questions:
  • A fish appears to be 2.00 m below the surface of a pond (nwater = 1.33) when viewed almost directly above by a fisherman. What i
    7·2 answers
  • Which of the following statements are true for electric field lines? Check all that apply. Check all that apply. Electric field
    7·1 answer
  • 22 points !
    5·1 answer
  • _______ are atoms that carry an electric charge.
    9·2 answers
  • 1. height of tower when stone dropped from it reaches ground in 10s is​
    5·1 answer
  • Circus a path along which electric current flows how would changing the battery in a circuit from 9 V to 1.5 V most likely affec
    14·2 answers
  • Can you explain the three main important reason why we use machine​
    11·2 answers
  • An electric motor is rated at 900 W. How much force does it apply when moving
    11·1 answer
  • Why do we use mercury in thermometer​
    13·1 answer
  • How is everyone's day been so far?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!