1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yaroslaw [1]
3 years ago
9

What does the law of conservation of momentum

Physics
1 answer:
babunello [35]3 years ago
6 0

Answer:

the total momentum of the two objects before the collision is equal to the total momentum of the two objects after the collision.

Explanation:

You might be interested in
A wave emitted from a source has a frequency of 10 Hz and wavelength 2.5 m. How much time will it take to reach a person located
const2013 [10]

Answer:

time taken by the wave to reach the person is 0.2 s

Explanation:

As we know that the speed of the wave is given as

v = \lambda f

here we know that the wavelength of the wave is

\lambda = 2.5 m

f = 10 Hz

now speed of the wave is given as

v = 10(2.5)

v = 25 m/s

Now time taken by the wave to reach 5 m distance is

t = \frac{L}{v}

t = \frac{5}{25}

t = 0.2 s

4 0
3 years ago
Convertir 1200 ms a cs<br> Convertir 0,3 mm a cm.
Vaselesa [24]

Answer:

You can do the reverse unit conversion from cm/s to m/s, or enter any two units below: Metre per second (U.S. spelling: meter per second) is an SI derived unit of both speed (scalar) and velocity (vector quantity which specifies both magnitude and a specific direction), defined by distance in metres divided by time in seconds.

Explanation:

3 0
3 years ago
Can anyone solve these for my by using unit vectors? Can you also please show your work
Oxana [17]

4. The Coyote has an initial position vector of \vec r_0=(15.5\,\mathrm m)\,\vec\jmath.

4a. The Coyote has an initial velocity vector of \vec v_0=\left(3.5\,\frac{\mathrm m}{\mathrm s}\right)\,\vec\imath. His position at time t is given by the vector

\vec r=\vec r_0+\vec v_0t+\dfrac12\vec at^2

where \vec a is the Coyote's acceleration vector at time t. He experiences acceleration only in the downward direction because of gravity, and in particular \vec a=-g\,\vec\jmath where g=9.80\,\frac{\mathrm m}{\mathrm s^2}. Splitting up the position vector into components, we have \vec r=r_x\,\vec\imath+r_y\,\vec\jmath with

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)t

r_y=15.5\,\mathrm m-\dfrac g2t^2

The Coyote hits the ground when r_y=0:

15.5\,\mathrm m-\dfrac g2t^2=0\implies t=1.8\,\mathrm s

4b. Here we evaluate r_x at the time found in (4a).

r_x=\left(3.5\,\dfrac{\mathrm m}{\mathrm s}\right)(1.8\,\mathrm s)=6.3\,\mathrm m

5. The shell has initial position vector \vec r_0=(1.52\,\mathrm m)\,\vec\jmath, and we're told that after some time the bullet (now separated from the shell) has a position of \vec r=(3500\,\mathrm m)\,\vec\imath.

5a. The vertical component of the shell's position vector is

r_y=1.52\,\mathrm m-\dfrac g2t^2

We find the shell hits the ground at

1.52\,\mathrm m-\dfrac g2t^2=0\implies t=0.56\,\mathrm s

5b. The horizontal component of the bullet's position vector is

r_x=v_0t

where v_0 is the muzzle velocity of the bullet. It traveled 3500 m in the time it took the shell to fall to the ground, so we can solve for v_0:

3500\,\mathrm m=v_0(0.56\,\mathrm s)\implies v_0=6300\,\dfrac{\mathrm m}{\mathrm s}

5 0
4 years ago
a projectile is shot horizontally from the edge of a cliff, 230m above the ground. the projectile lands 300m from base of the cl
bekas [8.4K]

Answer:

The time taken by the projectile to hit the ground is 6.85 sec.

Explanation:

Given that,

Vertical height of cliff = 230 m

Distance = 300 m

Suppose, determine the time taken by the projectile to hit the ground.

We need to calculate the time

Using second equation of motion

s=ut+\dfrac{1}{2}gt^2

Where, s = vertical height of cliff

u = initial vertical velocity

g = acceleration due to gravity

Put the value in the equation

230=0+\dfrac{1}{2}\times9.8\times t^2

t=\sqrt{\dfrac{230\times2}{9.8}}

t=6.85 sec

Hence, The time taken by the projectile to hit the ground is 6.85 sec.

7 0
3 years ago
A thin coil has 17 rectangular turns of wire. When a current of 4 A runs through the coil, there is a total flux of 5 ✕ 10−3 T ·
Alex73 [517]

Answer:

Inductance, L = 0.0212 Henries

Explanation:

It is given that,

Number of turns, N = 17

Current through the coil, I = 4 A

The total flux enclosed by the one turn of the coil, \phi=5\times 10^{-3}\ Tm^2

The relation between the self inductance and the magnetic flux is given by :

L=\dfrac{N\phi}{I}

L=\dfrac{17\times 5\times 10^{-3}}{4}

L = 0.0212 Henries

So, the inductance of the coil is 0.0212 Henries. Hence, this is the required solution.

7 0
3 years ago
Other questions:
  • Energy from the sun is _energy
    14·2 answers
  • __________ is the term for a reaction where energy is released.
    15·1 answer
  • A car traveled at an average velocity of 97 km/hr. If it traveled for 4 hrs, how far did the driver get?
    9·2 answers
  • What is the distance between two consecutive points in phase on a wave called?
    14·2 answers
  • What is the mechanical advantage of the machine shown below? a 5 b 4 c 3 d 2
    15·1 answer
  • An object is dropped from a bridge. A second object is thrown downwards 1.0 s later. They both reach the water 20 m below at the
    12·1 answer
  • 1. A pumpkin with a mass of 2 kg accelerates 2 m/s/s when an unknown force is applied to it. What is the amount of the force? ​
    5·1 answer
  • 500 J of work is used to decrease the angular velocity of a disk from 65 rad/s to 52 rad/s.What is the rotational inertia of the
    15·1 answer
  • WA
    14·1 answer
  • How large is the tension in a rope that is being used to accelerate a 100 kg box upward at 2m/s2?
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!