Answer:
speed = distance/time
Explanation:
speed = 150/30
speed =5m/s
you were running fast .....5m/s is a good speed
Answer:0.253Joules
Explanation:
First, we will calculate the force required to stretch the string. According to Hooke's law, the force applied to an elastic material or string is directly proportional to its extension.
F = ke where;
F is the force
k is spring constant = 34N/m
e is the extension = 0.12m
F = 34× 0.12 = 4.08N
To get work done,
Work is said to be done if the force applied to an object cause the body to move a distance from its initial position.
Work done = Force × Distance
Since F = 4.08m, distance = 0.062m
Work done = 4.08 × 0.062
Work done = 0.253Joules
Therefore, work done to stretch the string to an additional 0.062 m distance is 0.253Joules
The time taken for the first p-wave to reach the same seismic station is approximately 13 minutes.
<h3>Time of travel of the P-wave</h3>
In rock, S waves generally travel about 60% the speed of P waves, and the S wave always arrives after the P wave.
<h3>Relationship between speed and time</h3>
v ∝ 1/t
v₁t₁ = v₂t₂
t₁/t₂ = v₂/v₁
t₁/t₂ = 0.6v₁/v₁
t₁/t₂ = 0.6
t₁ = 0.6t₂
t₁ = 0.6 x 22 mins
t₁ = 13.2 mins
Thus, the time taken for the first p-wave to reach the same seismic station is approximately 13 minutes.
Learn more about P-waves here: brainly.com/question/2552909
#SPJ1
Search Results
Featured snippet from the web
The spontaneous emission of radiations from an unstable nuclei is known as natural radioactivity. on the other hand, The process of emission of radiations from naturally occurring isotopes when they are bombarded with sub-atomic particles or high levels of X-rays or gamma rays called artificial radioactivity.
I know i did part a correctly. heres what i did: momentum is conserved: m1 * u - m2 * u = m2 * v or (m1 - m2) * u = m2 * v Also, for an elastic head-on collision, we know that the relative velocity of approach = relative velocity of separation (from conservation of energy), or, for this problem, 2u = v Then (m1 - m2) * u = m2 * 2u m1 - m2 = 2 * m2 m1 = 3 * m2 m1 is the sphere that remained at rest (hence its absence from the RHS), so m2 = 0.3kg / 3 m2 = 0.1 kg b) this part confuses me, heres what i did (m1 - m2) * u = m2 * v (.3kg - .1kg)(2.0m/s) = .1kg * v .4 kg = .1 v v = 4 m/s What my teacher did: (.3g - .1g) * 2.0m/s = (.3g + .1g) * v I understand the left hand side but i dont get the right hand side. Why is m1 added to m2 when m1 is at rest which makes its v = zero?? v = +1.00m/s since the answer is positive, what does that mean? Also, if v was -1.00m/s what would that mean? thanks!
<span>Reference https://www.physicsforums.com/threads/elastic-collision-with-conservation-of-momentum-problem.651261...</span>