The diagram is missing; however, we know that the intensity of a sound wave is inversely proportional to the square of the distance from the source:

where I is the intensity and r is the distance from the source.
We can assume for instance that the initial distance from the source is r=1 m, so that we put

The intensity at r=3 m will be

Therefore, the sound intensity has decreased by a factor

.
The correct answer you're looking for would be Theories.
The scale in N, reading if the elevator moves upward at a constant speed of 1.5 m/s^2 is 862.5 N.
weight of man = 75kg
speed of elevator, a = 1.5 






So, the scale reading in the elevator is greater than his 862.5 N weight. This indicates that the person is being propelled upward by the scale, which it must do in order to do so, with a force larger than his weight. According to what you experience in quickly accelerating or slowly moving elevators, it is obvious that the faster the elevator acceleration, the greater the scale reading.
Speed can be defines as the pace at which the position of an object changes in any direction. Since speed simply has a direction and no magnitude, it is a scalar quantity.
Learn more about speed here:-
brainly.com/question/19127881
#SPJ4
Answer:
2.06 m/s
Explanation:
From the law of conservation of linear momentum, the sum of momentum before and after collision are equal. Considering this case where we have frictionless surface, no momentum is lost in the process.
Momentum before collision
Momentum is given by p=mv where m and v represent mass. The initial sum of momentum will be 9v+(27*0.5)=9v+13.5
Momentum after collision
The momentum after collision will be given by (9+27)*0.9=32.4
Relating the two then 9v+13.5=32.4
9v=18.5
V=2.055555555555555555555555555555555555555 m/s
Rounded off, v is approximately 2.06 m/s
The unit of height is:
Feet
Inches
Centimeters