B: <span>It contains all of the wavelengths of the visible light spectrum.
Hope this helps mate =)</span>
Let the total weight of the body be = x
Let the weight of the heart of the mammals be = y
Now the given percentage of 0.5 %, we will convert it into decimal form,
so this is equal to 0.005 in decimal form,
so the linear equation that gives the heart weight in terms of body weight will be,
y = 0.005x
Inertia refers to the tendency of a body to resist changes.
<h3>Inertia</h3>
It is the property of a body to resist change.
A moving body will continue moving until a force acts on it. Unless the acting force is big enough to overcome the inertia of the body, the body will continue moving.
Also, a body at rest will continue resting unless a force big enough to overcome the inertia force is used to displace it.
More on inertia can be found here: brainly.com/question/1358512
The question is incomplete. The complete question is :
High-speed stroboscopic photographs show that the head of a 200 g golf club is traveling at 60 m/s just before it strikes a 50 g golf ball at rest on a tee. After the collision, the club head travels (in the same direction) at 40 m/s. Find the speed of the golf ball just after impact.
Solution :
We know that momentum = mass x velocity
The momentum of the golf club before impact = 0.200 x 60
= 12 kg m/s
The momentum of the ball before impact is zero. So the total momentum before he impact is 12 kg m/s. Therefore, due to the conservation of momentum of the two bodies after the impact is 12 kg m/s.
Now the momentum of the club after the impact is = 0.2 x 40
= 8 kg m/s
Therefore the momentum of the ball is = 12 - 8
= 4 kg m/s
We know momentum of the ball, p = mass x velocity
4 = 0.050 x velocity
∴ Velocity = 
= 80 m/s
Hence the speed of the golf ball after the impact is 80 m/s.
Answer:
Inertia of an object depends on the <em>mass </em>of the object.
Explanation:
Inertia is the property that is possessed by a matter( anything that has weight and occupies space) that enables it to be at rest or in a state of continuous uniform motion.
<em>The inertial of a body is the resistance that is present in the body, that forces acting on the body have to overcome for the body to move or continue moving.</em><em> </em>
The inertia of a body depends on the mass of such a body, which is directly proportional. The mass of an object is the measure of inertia, the bigger the mass of an object the bigger the inertia.
<em>Therefore the Inertia of an object is largely dependent on the mass of such an object. </em>