Answer: Impulse = 4 kgm/s
Explanation:
From the question, you're given the following parameters:
Momentum P1 = 12 kgm/s
Momentum P2 = 16 kgm/s
Time t = 0.2 s
According to second law of motion,
Force F = change in momentum ÷ time
That is
F = (P2 - P1)/t
Cross multiply
Ft = P2 - P1
Where Ft = impulse
Substitute P1 and P2 into the formula
Impulse = 16 - 12 = 4 kgm/s
The magnitude of the impulse is therefore 4 kgm/s.
Answer:
0.00970 s
Explanation:
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
Force due to magnetic field = qvB sin θ
q = charge on the particle = 5.4 μC
v = velocity of the charge
B = magnetic field strength = 2.7 T
θ = angle between the velocity of the charge and the magnetic field = 90°, sin 90° = 1
F = qvB
Centripetal force responsible for circular motion = mv²/r = mvw
where w = angular velocity.
The centripetal force that causes the charge to move in a circular motion = The force exerted on the charge due to magnetic field
mvw = qvB
mw = qB
w = (qB/m) = (5.4 × 10⁻⁶ × 2.7)/(4.5 × 10⁻⁸)
w = 3.24 × 10² rad/s
w = 324 rad/s
w = (angular displacement)/time
Time = (angular displacement)/w
Angular displacement = π rads (half of a circle; 2π/2)
Time = (π/324) = 0.00970 s
Hope this Helps!!!
Answer: Energy from the core travels by radiation through the radiative
zone, then by convection through the convection zone.
Explanation:
Answer:
31
Explanation:
Given:
U=3
X=4
Y=7
u + xy
Substitute the given values to the equation:
3 + (4)(7)
3 + 28
31
Small tracks of water are left on the ice as kinetic energy is transformed into thermal energy