Complete Question
A small metal sphere, carrying a net charge q1=−2μC, is held in a stationary position by insulating supports. A second small metal sphere, with a net charge of q2= -8μC and mass 1.50g, is projected toward q1. When the two spheres are 0.80m apart, q2 is moving toward q1 with speed 20ms−1. Assume that the two spheres can be treated as point charges. You can ignore the force of gravity.The speed of q2 when the spheres are 0.400m apart is.
Answer:
The value 
Explanation:
From the question we are told that
The charge on the first sphere is 
The charge on the second sphere is 
The mass of the second charge is 
The distance apart is 
The speed of the second sphere is 
Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here KE is the kinetic energy which is mathematically represented as

substituting value


And U is the potential energy which is mathematically represented as

substituting values


So


Generally the total energy possessed by when
and
are separated by
is mathematically represented

Here
is the kinetic energy which is mathematically represented as

substituting value


And
is the potential energy which is mathematically represented as

substituting values


From the law of energy conservation

So


Let t=time to reach the ground=8 secs, g= acceleration of gravity. The speed v on reaching the ground is gt=8g=78.4 m/s where g=9.8 m/s/s approx.
Answer:

Explanation:
The speed of light is given by
and
hence

Speed of light is given by

Answer:
317.22
Explanation:
Given
Circular platform rotates ccw 93.1kg, radius 1.93 m, 0.945 rad/s
You 69.7kg, cw 1.01m/s, at r
Poodle 20.2 kg, cw 1.01/2 m/s, at r/2
Mutt 17.7 kg, 3r/4
You
Relative
ω = v/r
= 1.01/1.93
= 0.522
Actual
ω = 0.945 - 0.522
= 0.42
I = mr^2
= 69.7*1.93^2
= 259.6
L = Iω
= 259.6*0.42
= 109.4
Poodle
Relative
ω = (1.01/2)/(1.93/2)
= 0.5233
Actual
ω = 0.945- 0.5233
= 0.4217
I = m(r/2)^2
= 20.2*(1.93/2)^2
= 18.81
L = Iω
= 18.81*0.4217
= 7.93
Mutt
Actual
ω = 0.945
I = m(3r/4)^2
= 17.7(3*1.93/4)^2
= 37.08
L = Iω
= 37.08*0.945
= 35.04
Disk
I = mr^2/2
= 93.1(1.93)^2/2
= 173.39
L = Iω
= 173.39*0.945
= 163.85
Total
L = 109.4+ 7.93+ 36.04+ 163.85
= 317.22 kg m^2/s