Answer:
Answer is D.......Falling water turns a turbine that helps generate electricity.
Explanation:
Hydropower plants capture the energy of falling water to generate electricity. A turbine converts the kinetic energy of falling water into mechanical energy. Then a generator converts the mechanical energy from the turbine into electrical energy.
To find the impulse you multiply the mass by the change in velocity (impulse=mass×Δvelocity). So in this case, 3 kg × 12 m/s ("12" because the object went from zero m/s to 12 m/s).
The answer is 36 kg m/s
<span> Use the Law of Cosines, where you have a triangle with included angle of 145 degrees and sides of 16 and 18. You are then solving the equation: </span>
<span>d^2 = 16^2 + 18^2 - 2(16)(18)cos(145) </span>
Answer:
The initial energy level = 6
Explanation:
Photon wavelength is proportional to energy. The wavelength of emitted photons is related to the energy levels of the atom as given by the Rydberg formula:
ₕ₁₂
(1/λ) = Rₕ [(1/n₂²) − (1/n₁²)]
where n₂ = final energy level = 2
n₁ = initial energy level = ?
Rₕ = Rydberg's constant = 1.097 × 10⁷ m⁻¹
λ = wavelength = 410 nm = 410 × 10⁻⁹ m
1/(410 × 10⁻⁹) = (1.097 × 10⁷) [(1/2²) − (1/n₁²)]
0.223 = [(1/4) − (1/n₁²)]
(1/n₁²) = 0.02778
n₁² = 1/0.02778 = 36
n₁ = 6.