1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
3 years ago
9

Question: 23 of 66: If you increase the frequency of a sound wave four times, what will happen to its speed?Select one of the op

tions below as your answer:. A. The speed will increase four times.. B. The speed will decrease four times.. C. The speed will remain the same.. D. The speed will increase twice.. E. The speed will decrease twice.
Physics
2 answers:
Marta_Voda [28]3 years ago
8 0

Answer:

C. The speed will remain the same.

Explanation:

As we know that speed of sound wave is given as

v = \sqrt{\frac{\gamma P}{\rho}}

now this speed of sound depends on the properties of medium like

\gamma = adiabatic constant of medium

P = pressure of medium

\rho = density of medium

so here we can say that sound speed is totally independent of frequency of sound so if we change the frequency of sound then the speed of sound will remain the same. so correct answer will be

C. The speed will remain the same.

zysi [14]3 years ago
4 0
If you increase the frequency of a sound wave four times, t<span>he speed will increase four times. The correct option among all the options that are given in the question is the first option or option "A". This also shows the frequency and speed of the waves are directly proportional to each other. I hope it helps you.</span>
You might be interested in
Suppose a baseball pitcher throws the ball to his catcher.
amm1812

a) Same

b) Same

c) Same

d) Throw the ball takes longer

e) F is larger when the ball is catched

Explanation:

a)

The change in speed of an object is given by:

\Delta v = |v-u|

where

u is the initial velocity of the object

v is the final velocity of the object

The change in speed is basically the magnitude of the change in velocity (because velocity is a vector, while speed is a scalar, so it has no direction).

In this problem:

- In situation 1 (pitcher throwing the ball), the initial velocity is

u = 0 (because the ball starts from rest)

while the final velocity is v, so the change in speed is

\Delta v=|v-0|=|v|

- In situation 2 (catcher receiving the ball), the initial velocity is now

u = v

while the final velocity is now zero (ball coming to rest), so the change in speed is

\Delta v =|0-v|=|-v|

Which means that the two situations have same change in speed.

b)

The change in momentum of an object is given by

\Delta p = m \Delta v

where

m is the mass of the object

\Delta v is the change in velocity

If we want to compare only the magnitude of the change in momentum of the object, then it is given by

|\Delta p|=m|\Delta v|

- In situation 1 (pitcher throwing the ball), the change in momentum is

\Delta p = m|\Delta v|=m|v|=mv

- In situation 2 (catcher receiving the ball), the change in momentum is

\Delta p = m\Delta v = m|-v|=mv

So, the magnitude of the change in momentum is the same (but the direction is opposite)

c)

The impulse exerted on an object is equal to the change in momentum of the object:

I=\Delta p

where

I is the impulse

\Delta p is the change in momentum

As we saw in part b), the change in momentum of the ball in the two situations is the same, therefore the impulse exerted on the ball will also be the same, in magnitude.

However, the direction will be opposite, as the change in momentum has opposite direction in the two situations.

d)

To compare the time of impact in the two situations, we have to look closer into them.

- When the ball is thrown, the hand "moves together" with the ball, from back to ahead in order to give it the necessary push. We can verify therefore that the time is longer in this case.

- When the ball is cacthed, the hand remains more or less "at rest", it  doesn't move much, so the collision lasts much less than the previous situation.

Therefore, we can say that the time of impact is longer when the ball is thrown, compared to when it is catched.

e)

The impulse exerted on an object can also be rewritten as the product between the force applied on the object and the time of impact:

I=F\Delta t

where

I is the impulse

F is the force applied

\Delta t is the time of impact

This can be rewritten as

F=\frac{I}{\Delta t}

In this problem, in the two situations,

- I (the impulse) is the same in both situations

- \Delta t when the ball is thrown is larger than when it is catched

Therefore, since F is inversely proportional to \Delta t, this means that the force is larger when the ball is catched.

6 0
3 years ago
A flat coil of wire consisting of 20 turns, each with an area of 50 cm2, is positioned perpendicularly to a uniform magnetic fie
Nutka1998 [239]

Answer:

i = 0.5 A

Explanation:

As we know that magnetic flux is given as

\phi = NBA

here we know that

N = number of turns

B = magnetic field

A = area of the loop

now we know that rate of change in magnetic flux will induce EMF in the coil

so we have

EMF = NA\frac{dB}{dt}

now plug in all values to find induced EMF

EMF = (20)(50 \times 10^{-4})(\frac{6 - 2}{2})

EMF = 0.2 volts

now by ohm's law we have

current = \frac{EMF}{Resistance}

i = \frac{0.2}{0.40} = 0.5 A

5 0
3 years ago
Describe how the forces of gravity and friction affect the motion that occurs as you write on this page.
Zinaida [17]

Answer:

Friction is a force that slows down the motion of a moving object. ... Eventually, friction and gravity will work together to stop the motion of the slide. Gravity is a force that pulls two objects toward each other because of their mass. Mass is the measurement of the amount of material (matter) that makes up an object.

6 0
2 years ago
What happens when a force exerted on an object cause the object to move?
Charra [1.4K]

Answer:

B. Kinetic energy is created

Explanation:

5 0
3 years ago
Read 2 more answers
Explain why the top of the loop cannot be the same height as (or higher than) the top of the first hill. Assume the roller coast
Ivahew [28]

Answer:

By conservation of energy, it can climb up to a height equal to that it went down before. However, due to the friction in the machines, the total mechanical energy of the roller coaster will decrease. As a result, the first "hill" of many roller coasters are the highest, but the followings will have decreasing heights.

Explanation:

7 0
3 years ago
Read 2 more answers
Other questions:
  • Coherent light of frequency 6.32 x 1014 Hz passes through two thin slits and falls on a screen 85.0 cm away. You observe that th
    12·1 answer
  • Express in words AND mathematically the relationship between period and frequency
    7·2 answers
  • Two rocks weighing 5 Newtons and 10 Newtons are dropped simultaneously from the same height onto a Coyote. After three seconds o
    5·1 answer
  • How does you body reproduce
    13·1 answer
  • Which has a stronger attractions among its sub microscopic particles of a solid at 25°C or a gas and 25°C
    10·1 answer
  • Energy cannot be created nor destroyed, only changed from one form to another. How does listening to music on a radio obey the l
    15·1 answer
  • What process builds organic molecules such as sucrose by taking water away?
    12·1 answer
  • Newton’s law of gravity says the gravitational force between two objects is proportional to:
    11·1 answer
  • You find a rock that is about 20 grams large. This rock contains about 10 grams of Uranium-235 and 10 grams of the element it de
    12·1 answer
  • Question 5 of 32
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!