Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.
Cooking and Serving. Cook raw shell eggs that are broken for immediate preparation and service to heat all parts of the food to a temperature of 63°C<span> (</span>145°F<span>) for 15 seconds</span>
Answer:
E = 0 r <R₁
Explanation:
If we use Gauss's law
Ф = ∫ E. dA =
/ ε₀
in this case the charge is distributed throughout the spherical shell and as we are asked for the field for a radius smaller than the radius of the spherical shell, therefore, THERE ARE NO CHARGES INSIDE this surface.
Consequently by Gauss's law the electric field is ZERO
E = 0 r <R₁
Answer:
0.488 m
Explanation:
If θ be the angle ladder makes with the plane
cos θ = 1.2 / 5
Tan θ = 4.04
Let the height a person of weight 600 N can climb be h from the ground .
Distance from the base point where ladder touches the floor = h / tanθ
= h / 4.04
Total reaction force = total downward force
R = 200 + 600
800 N
Frictional force = μ R
= .2 x 800
= 160 N
Taking moment of force about the point on the ladder where it touches the floor and balancing them
200 x 1.2 x .5 + 600 x h / tanθ = μ R x 1.2 / tanθ ( reaction at the top point of ladder where it touches the wall is R₁ and
R₁ =μ R )
= 200 x 1.2 x .5 + 600 x h / tanθ = 160 x 1.2 / tanθ
120 - 600 h / 4.04 = 47.52
120 - 47.52 = 600 h / 4.04
72.48= 148.51 h
h = 0.488 m
=