Answer:
Shown below
Explanation:
a) for BrN3
80+3(14)=122amu
b) forC2H6
2(12) + 6(1) = 30amu
C) for NF2
14+2(19) = 52amu
D) Al2S3
2(27) + 3(32)= 150amu
E) for Fe(NO3)3
56 + 3 [14+3(16)] =242amu
F) Mg3N2
3(24) + 2(14)= 100amu
G) for (NH4)2CO3
2[14 +4(1)] +12 +3(16)=96amu
Answer:
<u>first step </u>
NO2(g) ------------------------------------> NO(g) + O(g)
<u>second step</u>
NO2(g) + O(g) -----------------------------> NO(g) + O2(g)
Explanation:
<u>first step </u>
NO2(g) ------------------------------------> NO(g) + O(g)
<u>second step</u>
NO2(g) + O(g) -----------------------------> NO(g) + O2(g)
Answer:
I think A.
Explanation:I say A because of the substance melting the quicking does have the highest melting point because its the highest.
The energy of 393 kJ is released as heat. Then, the container will experience an increase of temperature and, given that it is sealed, also an increase of pressure.
The increase of temperature results from the heat developed during the reaction.
The increase of pressure results from the fact that that the solid carbon will become gaseuos carbon dioxide. This gas will occupy a larger volume than the solid carbon and also this elevation of the temperature will make the pressure of the gas inside the container increase.
Answer:
204.5505 grams
2.5666 moles
Explanation:
For the first question, multiply 3.5 (# of moles) by 58.443 (g/mol for NaCl).
58.443 * 3.5
<em>I'll distribute 3.5 into 58.443.</em>
(3.5 * 50) + (3.5 * 8) + (3.5 * 0.4) + (3.5 * 0.04) + (3.5 * 0.003)
175 + 28 + 1.4 + 0.14 + 0.0105
203 + 1.4 + 0.14 + 0.0105
204.4 + 0.14 + 0.0105
204.54 + 0.0105
204.5505 grams
There are 204.5505 grams in 3.5 moles of NaCl.
For the second question, divide 150 (# of grams) by 58.443 (g/mol for NaCl). I'll convert both into fractions.
150/1 * 1000/58443
150000/58443
2.56660336 moles
2.5666 moles (rounded to 4 places to keep consistency with the first answer) are in 150 grams of NaCl.