Explanation:
Expression for energy balance is as follows.

or, 
Therefore,


Hence, expression for exit velocity will be as follows.

= ![V^{2}_{1} + 2C_{p}(T_{1} - T_{2})]^{0.5}](https://tex.z-dn.net/?f=V%5E%7B2%7D_%7B1%7D%20%2B%202C_%7Bp%7D%28T_%7B1%7D%20-%20T_%7B2%7D%29%5D%5E%7B0.5%7D)
As
for the given conditions is 1.007 kJ/kg K. Now, putting the given values into the above formula as follows.
= ![[(350 m/s)^{2} + 2(1.007 kJ/kg K) (30 - 90) K \frac{1000 m^{2}/s^{2}}{1 kJ/kg}]^{0.5}](https://tex.z-dn.net/?f=%5B%28350%20m%2Fs%29%5E%7B2%7D%20%2B%202%281.007%20kJ%2Fkg%20K%29%20%2830%20-%2090%29%20K%20%5Cfrac%7B1000%20m%5E%7B2%7D%2Fs%5E%7B2%7D%7D%7B1%20kJ%2Fkg%7D%5D%5E%7B0.5%7D)
= 40.7 m/s
Thus, we can conclude that velocity at the exit of a diffuser under given conditions is 40.7 m/s.
Answer:
40.92 m/s
Explanation:
The computation is shown below:
Ek = 1 ÷2mv²...............................(1)
v = √(2Ek/m).......................... (2)
Here EK denotes kinetic energy
m denotes mass
v denotes velocity
Given that
m = 0.25kg and Ek = 209.3J
So,
v = √(2×209.3 ÷0.25)
= √1674.4
= 40.92 m/s
These are two questions and two answers.
Part 1. Fin the value of the ration of velocity C to velocity D.
Answer: 2
Explanation:
1) Formula: momentum = mass * velocity
2) momentum C = mass C * velocity C
3) momentum D = mass D * velocity D.
4) C and D have the same momentum =>
mass C * velocity C = mass D * velocity D
5) mass C = (1/2) mass D => mass C / mass C = 1/2
6) use in the equation stated in the point 4)
velocit C / velocity D = mass D / mass C
using the equation stated in point 5:
mass D / mass C = 1 / [ mass C / mass D] = 1 / [1/2] = 2
=>
7) velocity C / velocity D = mass D / mass C = 2
Part 2: <span>ratio of kinetic energy C to kinetic energy D.
</span>
Answer: 2
Explanation:
1) formula: kinetic energy KE = (1/2) mass * (velocity)^2
2) KE C = (1/2) mass C * (velocity C)^2
3) KE D = (1/2) mass D * (velocity D)^2
4) KE C / KE D =
(1/2) mass C * (velocity C)^2 mass C (velocity C)^2
--------------------------------------- = --------------- * ---------------------- = (1/2) * (2)^2
(1/2) mass D *( velocity D)^2 mass D v(velocity D)^2
= 4 / 2 = 2
momentum= mass × velocity = 0.141kg×1.33m/s= 0.18753kg m/s = 0.188kg m/s (3s.f.)
There are a lot of volume units, most specifically in English units, that are greater than one liter. The following are as follows:
gallon, which is equal to 4.54 liters
minim
barrel
cord
peck
bushel and;
hogshead
Also included are metric units which are dekaliter onwards.