Answer:
Red 697 nm
384thz-468 the
1.59ev-1.94ev
255zj-310zj
Hopefully I answer yre question
Explanation:
<span>physical changes
Physical changes happen when something undergoes a transformation that does not alter their total inward arrangement. This appears differently in relation to the idea of compound change in which the creation of a substance changes or at least one substances consolidate or separate to frame a new one</span>
Answer:
Ionic bond is formed by the opposite ions attraction between the 2 atoms in an ionically bonded compound. The two ions i.e. Cation and Anions are formed by oxidation and reduction reactions respectively. General Ionic formula is as follow,
Mⁿ⁺ + Nⁿ⁻ → MN
where;
Mⁿ⁺ = Cation
Nⁿ⁻ = Anion
MN = Salt
Explanation:
Ionic bond is the electrostatic forces of attraction between positively charged cations and negatively charged Anions. These forces are very stronger resulting in increasing several physical properties of Ionic compounds like melting point and boiling point e.t.c.
Example:
Sodium Chloride:
NaCl is formed by Na⁺ cation and Cl⁻ anion as follow,
Oxidation of Na;
2 Na → 2 Na⁺ + 2 e⁻
Reduction of Cl₂;
Cl₂ + 2 e⁻ → 2 Cl⁻
Crystal Lattice formation is as follow,
Na⁺ + Cl⁻ → NaCl
Answer:
B
Explanation:
I looked it up and found the answer lol
Answer:
pH = 3.3
Explanation:
Buffer solutions minimize changes in pH when quantities of acid or base are added into the mix. The typical buffer composition is a weak electrolyte (wk acid or weak base) plus the salt of the weak electrolyte. On addition of acid or base to the buffer solution, the solution chemistry functions to remove the acid or base by reacting with the components of the buffer to shift the equilibrium of the weak electrolyte left or right to remove the excess hydronium ions or hydroxide ions is a way that results in very little change in pH of the system. One should note that buffer solutions do not prevent changes in pH but minimize changes in pH. If enough acid or base is added the buffer chemistry can be destroyed.
In this problem, the weak electrolyte is HNO₂(aq) and the salt is KNO₂(aq). In equation, the buffer solution is 0.55M HNO₂ ⇄ H⁺ + 0.75M KNO₂⁻ . The potassium ion is a spectator ion and does not enter into determination of the pH of the solution. The object is to determine the hydronium ion concentration (H⁺) and apply to the expression pH = -log[H⁺].
Solution using the I.C.E. table:
HNO₂ ⇄ H⁺ + KNO₂⁻
C(i) 0.55M 0M 0.75M
ΔC -x +x +x
C(eq) 0.55M - x x 0.75M + x b/c [HNO₂] / Ka > 100, the x can be
dropped giving ...
≅0.55M x ≅0.75M
Ka = [H⁺][NO₂⁻]/[HNO₂] => [H⁺] = Ka · [HNO₂]/[NO₂⁻]
=> [H⁺] = 6.80x010⁻⁴(0.55) / (0.75) = 4.99 x 10⁻⁴M
pH = -log[H⁺] = -log(4.99 x 10⁻⁴) -(-3.3) = 3.3
Solution using the Henderson-Hasselbalch Equation:
pH = pKa + log[Base]/[Acid] = -log(Ka) + log[Base]/[Acid]
= -log(6.8 x 10⁻⁴) + log[(0.75M)/(0.55M)]
= -(-3.17) + 0.14 = 3.17 + 0.14 = 3.31 ≅ 3.3