Answer: The first electromagnet has a more powerful current than
the second
Explanation:
Since the two electromagnets contain the same types of magnets and wires. If the magnet In the first moves much faster than the second. Therefore:
The first electromagnet has a more powerful current than the second
Because the induced EMF is proportional to the induced current.
Where the induced EMF depends on the speed of the magnet according to the formula below
EMF = BVL
So, increase in speed of the magnet will cause more powerful induced current and emf
In physics, gravity is the natural force that causes things to fall toward the earth. The noun gravity can also mean seriousness or solemnity. Someone who conducts themselves with an air of gravity is someone who takes what they are doing seriously.
It is a comet that was a comet
Answer:
2.83 m
Explanation:
The relationship between frequency and wavelength for an electromagnetic wave is given by

where
is the wavelength
is the speed of light
is the frequency
For the FM radio waves in this problem, we have:
is the minimum frequency, so the maximum wavelength is

The maximum frequency is instead

Therefore, the minimum wavelength is

So, the wavelength at the beginning of the range is 2.83 m.
To solve this problem we will apply the concepts related to the conservation of momentum. This can be defined as the product between the mass and the velocity of each object, and by conservation it will be understood that the amount of the initial momentum is equal to the amount of the final momentum. By the law of conservation of momentum,

Here,
= Mass of Basketball
= Mass of Tennis ball
= Initial velocity of Basketball
= Initial Velocity of Tennis ball
= Final velocity of Basketball
= Final velocity of the tennis ball
Replacing,

Solving for the final velocity of the tennis ball

Therefore the velocity of the tennis ball after collision is 11 m/s