In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.
Most of the fusion occurs in the core.
In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.
Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.
Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.
After the core is almost entirely iron, the star is no longer in the Main Sequence.
So, fusion in stars more massive than the sun continue fusing until the core is almost entirely <em>iron</em>.
The magnitude of the vector B is 10.9
A vector is a quantity which has magnitude as well as direction and it follows vector laws of addition.
To calculate the magnitude of the vector, we have to put the square of the components of the vector along the axes under the root.
Vector B has components,
x = 2.4
y = 9.8
z = 4.1
Applying the formula,
|B| = √x²+y²+z²
|B| = √(2.4)² + (9.8)² + (4.1)²
|B| = √5.76+96.04+16.81
|B| = √118.61
|B| = 10.9
Talking about the direction the the Vector B, it will be the line joining the origin with the points (2.4,9.8,4.1)
To know more about Vectors, visit,
brainly.com/question/25705666
#SPJ9
Answer:
True
Explanation:
Standard heat of formation is the heat change that deals with the formation of 1mole at standard rates and states of the given reactants . Standard heat of formation is the difference between the enthalpy change of reactants and products.
Answer:
E = 3.54 x 10⁻¹⁹ J
Explanation:
The energy of the photon can be given in terms of its wavelength by the use of the following formula:

where,
E = energy = ?
h = Plank's Constant = 6.626 x 10⁻³⁴ Js
c = speed of light = 2.998 x 10⁸ m/s
λ = wavelength of light = 560.6 nm = 5.606 x 10⁻⁷ m
Therefore,

<u>E = 3.54 x 10⁻¹⁹ J</u>
The total circuit current at the resonant frequency is 0.61 amps
What is a LC Circuit?
- A capacitor and an inductor, denoted by the letters "C" and "L," respectively, make up an LC circuit, also referred to as a tank circuit, a tuned circuit, or a resonant circuit.
- These circuits are used to create signals at particular frequencies or to receive signals from more complicated signals at particular frequencies.
Q =15 = (wL)/R
wL = 30 ohms = Xl
R = 2 ohms
Zs = R + jXl = 2 +j30 ohms where Zs is the series LR impedance
| Zs | = 30.07 <86.2° ohms
Xc = 1/(wC) = 30 ohms
The impedance of the LC circuit is found from:
Zp = (Zs)(-jXc)/( Zs -jXc)
Zp = (2+j30)(-j30)/(2 + j30-j30) = (900 -j60)2 = 450 -j30 = 451 < -3.81°
I capacitor = 277/-j30 = j9.23 amps
I Zs = 277/(2 +j30) = (554 - j8,310)/904 = 0.61 - j9.19 amps
I net = I cap + I Zs = 0.61 + j0.04 amps = 0.61 < 3.75° amps
Hence, the total circuit current at the resonant frequency is 0.61 amps
To learn more about LC Circuit from the given link
brainly.com/question/29383434
#SPJ4