Answer:
b.
They can convert the sun's energy into food.
Answer:
Halogens
Explanation:
From the given choices, the halogens will have the smallest radius within the same period.
The size of an atom is estimated by the atomic radius. This is taken as half of the inter-nuclear distance between two covalently bonded atoms of non-metallic elements or half of the distance between two nuclei in the solid state.
- Across a period in the periodic table, atomic radii decrease progressively from left to right.
- Down a group from top to bottom, atomic radii increase progressively due to the addition of successive shells.
Since halogen is the right most group from the choices given, it will have the smallest radius.
Answer:
The most important elements that we use in everyday life include carbon, hydrogen, oxygen, with smaller amounts of things like chlorine, sulfur, calcium, iron, phosphorus,nitrogen, sodium, and potassium. Apart from these, other elements include magnesium, zinc, neon, and helium are also in our daily existence.
all these element are my favourite element .......
1 mol of any particles has 6.02 * 10 ²³ particles.
If we look at 1 NH3 (1 mol NH3 or 1 molecule NH3), we can see that 1 molecule NH3 has 1 atom of N and 3 atoms of H; also 1 mole of NH3 has 1 mole of N atoms and 3 moles of H atoms.
So, 1 mol of NH3 has 1 mol of N atoms,
and 2.79 mol NH3 have 2.79 mol of N atoms.
2.79 mol of N atoms* 6.02 * 10 ²³ N atoms/ 1 mol N atoms = 1.68*10²⁴ N-atoms
Answer is 1.68*10²⁴ N-atoms.
Answer:- 14.0 moles of hydrogen present in 2.00 moles of
.
Solution:- We have been given with 2.00 moles of
and asked to calculate the grams of hydrogen present in it. It's a two step conversion problem. In first step we convert the moles of the compound to moles of hydrogen as one mol of the compound contains 7 moles of hydrogen. In next step the moles are converted to grams on multiplying the moles by atomic mass of H. The calculations are shown as:

= 14.0 g H
So, there are 14.0 g of hydrogen in 2.00 moles of
.