Centripetal acceleration is (speed-squared) / (radius)
CA = (6 m/s)² / (9 m)
CA = (36 m²/s²) / (9 m)
CA = (36/9) (m²/m·s²)
<em>Centripetal acceleration = 4 m/s²</em>
Objects are known to go down because of a unbalanced force
Before solving this question, first we have to understand the special theory of relative.
As per classical mechanics, the velocity of light will be different in different frame of reference. The light moves in the ether medium which exists every where in the entire universe.
Let us consider a body which moves with a velocity v. Let light is coming along the direction of the body. As per classical mechanics,the velocity of light with respect to the body will be [ c-v].
Let us consider that light is coming from opposite direction. Hence, the velocity of light with respect to the observer will be c+v.
From above we see that velocity of light is different in both the cases which is wrong.
As per Einstein's special theory of relativity, the velocity of light will be same in every frame of reference i.e c=300000 km/s.
As per the question ,the space craft is moving with a velocity 0.1 c.
We are asked to calculate the velocity of the light with respect to an observer present in Mars.
Considering Einstein's theory of relativity, the velocity of light will be c [300000 km/s] with respect to the person in Mars.
Answer:
650.65 K or 377.5°C
Explanation:
Area = A = 10 m²
Thickness of wall = L = 2.5 cm = 2.5×10⁻² m
Inner surface temperature of wall =
= 415°C = 688.15 K
Outer surface temperature of wall = 
Heat loss through the wall = 3 kW = 3×10³ W
Thermal conductivity of wall = k = 0.2 W/m K
Assumptions made here as follows
- There is not heat generation in the wall itself
- The heat conduction is one dimensional
- Heat flow follows steady state
- The material has same properties in all directions i.e., it is homogeneous.
Considering the above assumptions we use the following formula

∴ The temperature of the outer surface of the wall is 650.65 K or 377.5°C