<h3>
Answer: 22.5 m/s</h3>
=====================================================
Work Shown:
acceleration = ( finalVelocity - initialVelocity )/(change in time)
1.5 = (60 - x)/(25)
1.5*25 = 60-x
37.5 = 60-x
x = 60-37.5
x = 22.5
The initial velocity is 22.5 m/s
Answer:
My best guess would be B due to the fact of friction in a simple machine
Answer:
Acceleration of the boy a₁:

Explanation:
Conceptual analysis
We apply Newton's second law to the boy and the girl:
F = m*a (Formula 1)
F : Force in Newtons (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
Nomenclature
m₁ : boy mass
m₂ : girl mass
a₁ : boy acceleration
a₂ : girl acceleration
F₁ : boy acceleration
F₂ : girl acceleration
Known data
m₁ = 57 kg
m₂ = 41 kg
a₂ = 2.6 m/s²
Problem development
We apply to Newton's third law of action and reaction, then:
F₁ = F₂ , We apply the formula (1):
m₁*a₁ = m₂*a₂



Answer:
The time required by the impulse to travel from foot to brain equals 0.019 seconds
Explanation:
For uniform motion the distance, speed, time are related by the equation

In our case since the person is 1.90 meters tall so the nerve impulse will have to cover a distance of 1.90 meters at a speed of 100 m/s.
Hence the time required for the impulse to travel from foot to the brain can be calculated as

0.9 is less than 1.0 by 0.1
so your answer is true
hope this helps