Answer:
To convert m/sec into km/hr, multiply the number by 18 and then divide it by 5.
Explanation:
please mark as brainliest
Answer:
40sec
Explanation:
Data
Work = 440 J
Power= 11watt
time = ?
Power = work done/time
===> time = work done/power
= 440/11
= 40sec
Answer:
b) The star is moving away from us.
Explanation:
If an object moves toward us, the light waves it emits are compressed - the wavelength of the light will be shorter, making the light bluer. On the other hand, if an object moves away from us, the light waves are stretched, making it redder. If from laboratory measurements we know that a specific hydrogen spectral line appears at the wavelength of 121.6 nanometers (nm) and the spectrum of a particular star shows the same hydrogen line appearing at the wavelength of 121.8 nm, we can conclude that the star is moving away from npos, since the wavelength related to that star is more expanded.
Answer:
see below
Explanation:
a. 0.1886 x 12
=2.2632
This has 2 sig figures so the answer can only have 2 sig figures
2.3
b. 2.995 - 0.16685
=2.82815
The most accurate in the problem is to thousands place so our answer can only be accurate to the thousands place
2.828
c. 910 x 0.18945=172.3995
The least number of significant figures is 3 so the answer can only have 3 significant figures
172
Answer:
The potential energy of the hiker is
.
Explanation:
Given that,
Mass of the hiker, m = 61 kg
Height above sea level, h = 1900 m
We need to find the potential energy associated with a 61-kg hiker atop New Hampshire's Mount Washington. The potential energy is given by :

g is the acceleration due to gravity

So, the potential energy of the hiker is
. Hence, this is the required solution.