To solve this problem we need to apply the corresponding sound intensity measured from the logarithmic scale. Since in the range of intensities that the human ear can detect without pain there are large differences in the number of figures used on a linear scale, it is usual to use a logarithmic scale. The unit most used in the logarithmic scale is the decibel yes described as

Where,
I = Acoustic intensity in linear scale
= Hearing threshold
The value in decibels is 17dB, then

Using properties of logarithms we have,




Therefore the factor that the intensity of the sound was 
its the 3rd option!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Answer:
Net force: 20 N to the right
mass of the bag: 20.489 kg
acceleration: 0.976 m/s^2
Explanation:
Since the normal force and the weight are equal in magnitude but opposite in direction, they add up to zero in the vertical direction. In the horizontal direction, the 195 N tension to the right minus the 175 force of friction to the left render a net force towards the right of magnitude:
195 N - 175 N = 20 N
So net force on the bag is 20 N to the right.
The mass of the bag can be found using the value of the weight force: 201 N:
mass = Weight/g = 201 / 9.81 = 20.489 kg
and the acceleration of the bag can be found as the net force divided by the mass we just found:
acceleration = 20 N / 20.489 kg = 0.976 m/s^2
Answer:
The magnitude of induced emf is 5.4 V
Explanation:
Given:
Magnetic field
T
Area of loop

Time take to reduce loop to zero
sec
To find induced emf we use faraday's law,
Induced emf is given by,

Here minus sign shows lenz law, for finding magnitude of emf we ignore it.
Where
Put the value of flux and find induced emf,


V
Therefore, the magnitude of induced emf is 5.4 V