Answer:
Explanation:
Fill up the tank of water which is at a height.
So Work Done = Change n Potential Energy = mgh
Here h is the Height of the Center of mass of the water
Divide it by Time to get power
Answer:
When an external non-zero net force acts on an object, the object accelerates in the direction of the net force. The magnitude of the acceleration is directly proportional to the magnitude of the net force and inversely proportional to the mass of the object
hope this helps u
Answer:
Vp = 1 [m/s]
Explanation:
In order to solve this problem, we must use the principle of conservation of the amount of movement. In the same way, analyze the before and after of the actions.
<u>The moment before</u>
The 50kg person is still hold (no movement) with the 2kg helmet
<u>The moment after</u>
The helmet moves at 25[m/s] in one direction, the person moves in the opposite direction, due to the launch of the helmet.
In this way we can apply the principle of conservation of movement, expressing the before and after. To the left we have the before and to the right of the equal sign we have the after.
Σm*V1 = Σm*V
where:
m = total mass = (2 + 50) = 52[kg]
V1 = velocity before the lunch = 0
(50 + 2)*V1 = (25*2) - (Vp*50)
0 = 50 - 50*Vp
50 = 50*Vp
Vp = 1 [m/s]
Answer: A. All of the answers are correct.