Answer:
the angular velocity of the car is 12.568 rad/s.
Explanation:
Given;
radius of the circular track, r = 0.3 m
number of revolutions per second made by the car, ω = 2 rev/s
The angular velocity of the car in radian per second is calculated as;
From the given data, we convert the angular velocity in revolution per second to radian per second.

Therefore, the angular velocity of the car is 12.568 rad/s.
Based on the equation KE = 1/2(m)(v^2), Kinetic Energy can be measured based on velocity. If an object has a large velocity, it have a larger kinetic energy than if the velocity is small.
Hope this helps.
If this helped you, please vote me as brainliest!
Answer:
The first statement is false, the Sun has a stronger gravitational pull.
:
The first person to say the Earth orbited the sun was Nicolaus Copernicus
Let N be the normal force that forces the person against the wall.
Then u N = m g is the frictional force supporting the person's weight
and N = m g / u
also, N = m v^2 / R is the normal force providing the centripetal acceleration
So, m g / u = m v^2 / R
v^2 = g R / u
since v = 2 pi R T
4 pi^2 R^2 T^2 = g R / u and T^2 = g / (4 u pi^2 R)
T = 1/ (2 pi) (g /(u R))^1/2 = .159 * (9.8 m/s^2 / (.521 * 4.4 m)) ^1/2
T = .68 / s
Do you see any thing wrong here?
T should have units of seconds not 1 / seconds
v should be 2 * pi * R / T where T is the time for 1 revolution
So you need to make that correction in the above formula for v.