The amount of heat needed to increase the temperature of a substance by

is given by

where
m is the mass of the substance

the specific heat capacity

the increase in temperature
In our problem, the mass of the water is m=750 g, the specific heat is

and the amount of heat supplied is

, so if we re-arrange the previous formula we find the increase in temperature of the water:
Within an atom, there are three elementary particles: the proton, neutron, and electron. Most of the mass of an atom is situated within the nucleus, which is the central part of the atom. It is made up of protons and neutrons, which are the heaviest subatomic particles. The electrons within the atom, orbit around the nucleus at a very far distance. Electrons are also a part of the lightest group of subatomic particles called leptons. That is why these electrons don't contribute much to the majority of an atoms mass. They are very light and they orbit at very far distances.
Answer:
10 N
Explanation:
F = ma = m(Δv/t) = 5.0(10.0 - 0)/5.0 = 10 N