Answer:
1) When 69.9 g heptane is burned it releases 5.6 mol water.
2) C₇H₁₆ + 11O₂ → 7CO₂ + 8H₂O.
Explanation:
- Firstly, we should balance the equation of heptane combustion.
- The balanced equation is: <em>C₇H₁₆ + 11O₂ → 7CO₂ + 8H₂O.</em>
This means that every 1.0 mole of complete combustion of heptane will release 8 moles of H₂O.
- We need to calculate the no. of moles in 69.9 g of heptane that is burned using the relation: <em>n = mass/molar mass.</em>
n of 69.9 g of heptane = mass/molar mass = (69.9 g)/(100.21 g/mol) = 0.697 mol ≅ 0.7 mol.
<em><u>Using cross multiplication:</u></em>
1.0 mol of heptane releases → 8 moles of water.
0.7 mol of heptane releases → ??? moles of water.
<em>∴ The no. of moles of water that will be released from burning (69.9 g) of water</em> = (0.7 mol)(8.0 mol)/(1.0 mol) = <em>5.6 mol.</em>
<em>∴ When 69.9 g heptane is burned it releases </em><em>5.6</em><em> mol water. </em>
<em />
The best answer is (3)
In these kind of reactions, there is a transfer of electrons from one reactant to another. electrons are lost from one substance and gained by another.
Oxidation is loss of electrons from a substance, and Reduction is gain of electrons by a substance.
These two processes cannot occur without the other. If there is a reduction there must be an oxidation reaction and vice versa. The reactions usually occur simultaneously.
For example, table salt is formed by a redox reaction. Sodium is oxidized i.e. loses an electron (and becomes positively charged) while chlorine gas is reduced i.e. gains the electron (and become negatively charged). The result is formation of sodium chloride.
Get smarty book dbbdndnrnr
Answer:
sdoawjdiowadawoi siokdwajsiokwjDIWIAdawidjaskmdnkawdjad kadakwdkawdawhdaw
Explanation: im smart
The fact that some of the solid was transferred would decrease the mass of the limiting reactant.
<h3>What is the limiting reactant?</h3>
We know that in a chemical reaction, there are at least two substances that are combined in order to give the product of the reaction. We also know that the product that we obtain must be in accordance to the stoichiometry of the reaction.
It is common to see that one of the reactants would be present in a very large amount while the other reactant would be present only in quite a small amount. The reactant that is present in a small amount is said to be the limiting reactant while the one that is present in the large amount is said to be the reactant that is in excess.
Having said this, we know that the mass of the limiting reactant can be obtained from the mass of the solid that is obtained after the reaction.
If we do not take out all of the solid from the centrifuge, the mass would not be accurately weighed and the mass of the limiting reactant would not be accurately determined.
Learn more about mass of the product:brainly.com/question/19694949
#SPJ1