Answer:
1) p₀ = 0.219 kg m / s, p = 0, 2) Δp = -0.219 kg m / s, 3) 100%
Explanation:
For the first part, which is speed just before the crash, we can use energy conservation
Initial. Highest point
Em₀ = U = mg y
Final. Low point just before the crash
Emf = K = ½ m v²
Em₀ = Emf
m g y = ½ m v²
v = √ 2 g y
Let's calculate
v = √ (2 9.8 0.05)
v = 0.99 m / s
1) the moment before the crash is
p₀ = m v
p₀ = 0.221 0.99
p₀ = 0.219 kg m / s
After the collision, the car's speed is zero, so its moment is zero.
p = 0
2) change of momentum
Δp = p - p₀
Δp = 0- 0.219
Δp = -0.219 kg m / s
3) the reason is
Δp / p = 1
In percentage form it is 100%
It functions as insulation, to keep it warm
3.86 m/s^2 is the value of gravity on this large, but low-density, world.
given :
Kepler-12b
diameter= 1.7 times of Jupiter (R_Jupiter = 6.99 × 10^7 m),
mass = 0.43 Jupiter (M_Jupiter = 1.90 × 10^27 kg ).
g = GM/r^2
g = 6.67×10^-11 × 0.43×1.9×10^27/( 1.7×6.99×10^7)^2
g = 3.859 ~ 3.86 m/s^2
Gravity, also referred to as gravitation, is the unchanging force of attraction that binds all matter together in mechanics. It is by far the weakest known force in nature, so it has no effect on determining the internal properties of common matter.
On Earth, everything has weight, or a gravitational pull that is imposed by the planet's mass and proportional to the object's mass. A measure of the force of gravity is the acceleration that freely falling objects experience. At the surface of the Earth, gravity accelerates at a rate of about 9.8 meters per second. As a result, an object's speed increases during free fall by about 9.8 meters per second. At the Moon's surface, a freely falling body accelerates to about 1.6 m/s2.
To know more about gravity visit : brainly.com/question/14428640
#SPJ4
Answer: 2 seconds is the unit rate.
Explanation:
We know that Jason does 30 pushups in 60 seconds at a constant rate, and we know that each push up takes 2 seconds.
then, we can write this as 30 pushups/60 seconds = (1/2) pushups per second.
Here, two seconds represents the time needed to do one pushup, is the unit rate (this means that we need 2 seconds to have a unit "one pushup")
Answer:
- A book lying on a table - Balanced force
- An airplane cruising in level flight - Balanced
- A rock falling from a cliff - Unbalanced force
- A bridge collapsing in an earthquake - Unbalanced force
- A man sitting on a park bench - Balanced force
- A space shuttle taking off - Unbalanced force
- A car maintaining a constant speed on a straight road - Balanced force
- An airplane landing - Unbalanced force
Explanation:
Usually, one or more forces act on a body at an instant of time. When these forces acting on a body and bring the body in the equilibrium position, the force is said to be balanced. The unbalanced force changes the equilibrium state of the body.
As in the case of an airplane cruising in a level flight, the weight of the plane will be equal to the lift force and the thrust is equal to the drag. So the plane is experiencing a balanced force.