Incomplete question. However, I provided a brief about Kinetic energy generation.
<u>Explanation:</u>
Interestingly, Kinetic energy in simple terms refers to the energy possessed by a body in motion.
It is often calculated using the formula E =
A good example of creating even more kinetic energy is a hand crank toy car that moves after you wind it a little, when the car moves it is generating another measure of K.E.
Elliptical orbit.<<<<<<<<<<
Hi!
SI units are physical measurements which will be in the form of kilograms, second, kelvin, metres, etc.
Since kilograms measure the weight of an object, it is out. Miles and feet are not SI units, so they are also out. This only leaves one answer left!
Hopefully, this helps! =)
Answer:
A. 1.4 m/s to the left
Explanation:
To solve this problem we must use the principle of conservation of momentum. Let's define the velocity signs according to the direction, if the velocity is to the right, a positive sign will be introduced into the equation, if the velocity is to the left, a negative sign will be introduced into the equation. Two moments will be analyzed in this equation. The moment before the collision and the moment after the collision. The moment before the collision is taken to the left of the equation and the moment after the collision to the right, so we have:

where:
M = momentum [kg*m/s]
M = m*v
where:
m = mass [kg]
v = velocity [m/s]

where:
m1 = mass of the basketball = 0.5 [kg]
v1 = velocity of the basketball before the collision = 5 [m/s]
m2 = mass of the tennis ball = 0.05 [kg]
v2 = velocity of the tennis ball before the collision = - 30 [m/s]
v3 = velocity of the basketball after the collision [m/s]
v4 = velocity of the tennis ball after the collision = 34 [m/s]
Now replacing and solving:
(0.5*5) - (0.05*30) = (0.5*v3) + (0.05*34)
1 - (0.05*34) = 0.5*v3
- 0.7 = 0.5*v
v = - 1.4 [m/s]
The negative sign means that the movement is towards left
Answer:
Explanation:
From the given information:
We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then
The volume charge distribution relates to the radial direction at r = R
∴



To find the constant k, we examine the total charge Q which is:


∴



Thus;




Hence, from equation (1), if k = 


To verify the units:

↓ ↓ ↓
c/m³ c/m³ × 1/m
Thus, the units are verified.
The integrated charge Q



since 
