1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allisa [31]
3 years ago
12

For a positive charge moving in the direction of the electric field,its potential energy increases and its electric potential de

creases.its potential energy decreases and its electric potential decreases.its potential energy decreases and its electric potential increases.its potential energy and its electric potential both remain constant.its potential energy increases and its electric potential increases.
Physics
1 answer:
Ira Lisetskai [31]3 years ago
5 0

Answer:

its potential energy decreases and its electric potential decreases.

Explanation:

Let's consider a radial field for simplicity. We have:

- The electric potential of the field is given by:

V=\frac{kQ}{r}

where

k is the Coulomb's constant

Q is the charge source of the field

r is the distance from Q

We see that the electric potential decreases as we move away from the source. If we consider a positive charge q moving in the direction of the electric field, this charge q will move away from the charge Q (because the field lines generated by the positive particle Q point away from the particle), so the electric potential will decrease.

- The potential energy of the moving charge is given by

U=qV

where q is the magnitude of the charge. As we said previously, V is decreasing while the charge is moving in the direction of the field, so since U is directly proportional to V, U will decrease as well.

You might be interested in
What are the two systems of measurement
Eva8 [605]
The Metric, and the US Standard systems. :)
6 0
4 years ago
A cylinder contains 250 L of hydrogen gas (H2) at 0.0^∘Cand a pressure of 10.0 atm. How much energy is required to raise the tem
Over [174]

Answer:

The amount of energy needed to raise the temperature of the cylinder by 25 °C is 23.3 KJ of heat.

Explanation:

The step by step calculation can be found in the attachment below. Thank you.

8 0
3 years ago
football player A has a mass of 110 kg is running on the field is velocity of 2 m/s football player B has a mass of 120 kg and a
valkas [14]

Complete Question:

Football player A has a mass of 110 kg, and he is running down the field with a velocity of 2 m/s. Football player B has a mass of 120 kg and is stationary. What is the total momentum after the collision?

Answer:

Total momentum = 220 Kgm/s.

Explanation:

<u>Given the following data;</u>

For footballer A

Mass, M1 = 110kg

Velocity, V1 = 2m/s

For footballer B

Mass, M1 = 120kg

Velocity, V1 = 0m/s since he's stationary.

To find the total momentum;

Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.

Mathematically, momentum is given by the formula;

Momentum = mass * velocity

a. To find the momentum of A;

Momentum \; A = 110 * 2

Momentum A = 220 Kgm/s.

b. To find the momentum of B;

Momentum \; B = 120 * 0

Momentum B = 0 Kgm/s.

c. To find the total momentum of the two persons;

Total \; momentum = Momentum \; A + Momentum \; B

Substituting into the equation, we have;

Total \; momentum = 220 + 0

<em>Total momentum = 220 Kgm/s. </em>

7 0
3 years ago
Calculate the kinetic energy in joules of an automobile weighing 2135 lb and traveling at 55 mph. (1 mile = 1.6093 km, 1 lb = 45
victus00 [196]
<span>Let's convert the speed to m/s: speed = (55 mph) (1609.3 m / mile) (1 hour / 3600 seconds) speed = 24.59 m/s Let's convert the mass to kilograms: mass = (2135 lb) (0.45359 kg / lb) mass = 968.4 kg We can find the kinetic energy KE: KE = (1/2) m v^2 KE = (1/2) (968.4 kg) (24.59 m/s)^2 KE = 292780 joules The kinetic energy of the automobile is 292780 joules.</span>
4 0
3 years ago
A child pushes a 100 kg refrigerator with a force of 50 N, but the refrigerator does not move. Suppose the coefficient of static
faust18 [17]

Answer:

50 N

Explanation:

Since the refrigerator doesn’t move, that means the force of friction equals the amount of force the child exerts on the fridge. If the friction force were greater than the force by the child, the fridge would start accelerating towards the child. If it were less than the force the child exerted, the fridge would start accelerating away from the child. Therefore, the net force must be 0, in this case, the friction force is equal to the force the child exerted, for it to stay at rest (as Newton’s First Law stated).

I hope this helps! :)

8 0
3 years ago
Other questions:
  • What wave phenomenon is responsible for the sunlight shown in this diagram? A.)Diffraction, because light is bent around the clo
    14·2 answers
  • Which best describes what is made of matter?
    9·2 answers
  • • 500 waves pass by in 2 second. These waves have a wavelength of 6
    10·1 answer
  • Abdul has not eaten in a while, so his endocrine system releases hormones that slow the process of digestion, which in turn slow
    5·2 answers
  • What effect does time have on the speed of a moving object
    14·1 answer
  • Create a group of 3-4 students. Using your cell phone flashlight and the filter, create a "blue" flashlight, "red" flashlight, a
    14·1 answer
  • Dolphins emit clicks of sound for communication and echolocation. A marine biologist is monitoring a dolphin swimming in seawate
    13·1 answer
  • What is another name for the range of motion in your joint
    6·1 answer
  • When Pluto was classified as a planet it was known as a oddball planet why? Why is it less if an oddball now?
    13·1 answer
  • You have two rocks made of the same material that are at the same
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!