Answer:
Explanation:
Heat can transfer between objects in two different ways. Generally, heat will travel from places of higher heat to places of lower heat.
The first is conduction. This is when the object being heated and releasing heat are in direct contact. Not as much heat is lost in this process, since the thermal energy has nowhere else to go except for the object it is touching. An example would be putting a kettle on a hot stove, but it could also be grabbing a cold pole with your relatively warm hands.
The second is convection. This is where heat is radiated into the air, and thus, transferred by the air, to another object. The actual heat that you feel is actually electromagnetic waves, and its transfer from an object is called electromagnetic radiation. Convection is the heat you feel from a near fire or a space heater. This is also why wind is present in our atmosphere.
There is also radiation. This is caused from the burning or breaking down of a substance. This might come from the sun.
I hope I did enough to deserve the 45 points!
Answer:
Photosynthesis
Explanation:
If thats one of the options, thats the answer. Let me know if its not, and I'll be glad to help :)
Answer: D. Mutation in coding sequences are more likely to be deleterious to the organism than mutations in noncoding sequences.
Explanation: It was not likely to be that the coding sequences are replicated more often. The only possible explanation is that the mutations in coding is more likely to be deleterious to the organism than mutations because it is in a non coding sequence.
Insertion of human genes into bacteria, also known as recombinant DNA technology, is used for the large scale production of human insulin, using bacteria as the insulin-producing machinery. The gene containing information for insulin production is inserted into the DNA of bacteria, which transcribe and translate it, and insulin is produced.
What did Dalton's atomic theory contribute to science?
Dalton's atomic theory proposed that all matter was composed of atoms, indivisible and indestructible building blocks. While all atoms of an element were identical, different elements had atoms of differing size and mass.