Answer:
lower
Explanation:
The higher the sea level, the lower the atmospheric pressure. This is due to the density of air decreasing as the altitude increases.
Answer:
D. The electrochemical reaction of the battery must be reversible.
Explanation:
The batteries are based on the production of an electric flux given by a<u> redox reaction</u>. This reaction is <u>spontaneous</u> and is<u> thermodynamically favored</u>.
Thus, when the reactants to the reaction are finished, the flow of current stops and ends. Therefore, when current is administered from another source, the reaction <u>changes its direction</u> and reagents that were previously consumed begin to occur. Therefore the condition for it to be <u>rechargeable</u> is that the reaction can go <u>forward or backward</u>, that is, it is <u>reversible</u>.
Answer:
8 m
Explanation:
3.0 x 10*8 divided by 3.75 x 10*7 = 8 m
Answer:
hope this help by the way found off of yahoo
Explanation:
Calculate the number of grams of nitrogen dioxide that are produced from
4 moles of nitric oxide.
2NO(g) + O2(g) -->2NO2(g)
I really need help with this... I need to know how to work it too... I can balance it out but not sure about grams... This is it balanced out with 4 moles of nitric oxide
4NO(g) + 2O2(g) ->4NO2(g) please help and explain i want to learn this
The question is incomplete, complete question is :
In the Haber reaction, patented by German chemist Fritz Haber in 1908, dinitrogen gas combines with dihydrogen gas to produce gaseous ammonia. This reaction is now the first step taken to make most of the world's fertilizer. Suppose a chemical engineer studying a new catalyst for the Haber reaction finds that 348 liters per second of dinitrogen are consumed when the reaction is run at 205°C and 0.72 atm. Calculate the rate at which ammonia is being produced.
Answer:
The rate of production of ammonia is 217.08 grams per second.
Explanation:

Volume of dinitrogen used in a second = 348 L
Temperature of the gas = T = 205°C = 205+273 K = 478 K
Pressure of the gas = P = 0.72 atm
Moles of dinitrogen = n

According to reaction, 1 mole of dinitriogen gives 2 mole of ammonia.Then 6.385 moles of dinitrogen will give:

Mass of 12.769 moles of ammonia;
12.769 mol 17 g/mol = 217.08 g
217.08 grams of ammonia is produced per second.So, the rate of production of ammonia is 217.08 grams per second.