1) D = 13.6 g / mL
2)ethyl alcohol weighs 158g
3)ρ
_copper = 8.9 g 
Explanation:
1)
D = m / V
=306.0 g / 22.5 mL
D= 13.6 g / mL
2)
density = mass / volume
mass = density × volume
=0.789g /ml × 200.0 ml
M=158g
Ethyl alcohol weighs 158g
3)
ρ (density) = Mass / Volume
ρ
_copper = 1896 g / 8.4cm × 5.5cm × 4.6cm
= 1896g / 212.5 
ρ
_copper=8.9 g 
2H2O = 2H2 + O2.
<h3><u>Explanation</u>:</h3>
Balancing equations is very essential because of the fact that it represents the stoichiometric quantities of the reactants needed to react to form the product. The ratio of the weights of reactant and product are also very well understood from this.
Here in this equation, the water is broken into hydrogen and oxygen. The balanced reaction is
2H2O = 2H2 + O2.
Two moles of water is broken down into 2 moles of hydrogen and one mole of oxygen.
Answer:
B) All carbon atoms have 6 neutrons.
Explanation:
The false statement from the given choices is that all carbon atoms have 6 neutrons.
There is a phenomenon called isotopy in chemistry.
Isotopy is the existence of two or more atoms of the same element having the same atomic number but different mass numbers due to the differences in the number of neutrons in their various nuclei.
- These atoms of elements are called isotopes.
- Carbon atoms generally have proton number of 6 which is the same as the atomic number.
- As with all atoms, the mass number or atomic mass equals the number of protons and neutrons.
For the isotopes of carbon, their number of neutrons differs.
For example:
<em>¹²₆C ¹³₆C ¹⁴₆C</em>
The number of neutrons differs in the above isotopes.
Number of neutrons = mass number - atomic number;
¹²₆C , number of neutrons = 12 - 6 = 6
¹³₆C, number of neutrons = 13 - 6 = 7
¹⁴₆C, number of neutrons = 14 - 6 = 8
Therefore, based on the concept of isotopy, all carbon atoms do not have 6 neutrons.
Answer:
Double and triple covalent bonds occur when four or six electrons are shared between two atoms, and they are indicated in Lewis structures by drawing two or three lines connecting one atom to another
Explanation: