Answer:
As the temperature of a sample of gas falls from 45.0ºC to 30.0ºC, its pressure falls to 300.
Explanation:
2AgNO3+K2CrO4⇒Ag2CrO4(s)+2KNO3
Hence by mixing 0.0024M AgNO3 and 0.004M
K2CrO4, we will have Ag2CrO4 which is precipitated out and leave us with
0.0024M KN03 which is mixed with (0.004-0.0024/2)M, it can be 0.0028M, of K2Cr04
Answer:
Explanation:
All compounds are molecules, but not all molecules are compounds. That is because a molecule can be made up of two atoms of the same kind, as when two oxygen atoms bind together to make an oxygen molecule. However, all compounds are made up of two or more different types of atoms.
Answer:-A. It is less than 890 kJ/mol because the amount of energy required to break bonds is less than the amount of energy released in forming bonds.
Explanation: Endothermic reactions are defined as the reactions in which energy of the product is greater than the energy of the reactants. The total energy is absorbed in the form of heat and
for the reaction comes out to be positive.
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
In the formation of new bonds more energy is released than is required to break the existing bonds, heat is released.
In the formation of bonds less energy is released than is required to break the existing bonds, heat is absorbed.
Answer:
1.53 L
Explanation:
Step 1: Given data
- Mass of oxygen (m): 11.2 g
- Ideal gas constant (R): 0.0821 atm.L/mol.K
Step 2: Calculate the moles (n) corresponding to 11.2 g of oxygen
The molar mass of oxygen is 32.00 g/mol.
11.2 g × (1 mol/32.00 g) = 0.350 mol
Step 3: Calculate the volume of oxygen
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T / P
V = 0.350 mol × (0.0821 atm.L/mol.K) × 415 K / 7.78 atm
V = 1.53 L