I’m not really sure I’m sorry
Answer:
The fraction fraction of the final energy is stored in an initially uncharged capacitor after it has been charging for 3.0 time constants is

Explanation:
From the question we are told that
The time constant 
The potential across the capacitor can be mathematically represented as

Where
is the voltage of the capacitor when it is fully charged
So at


Generally energy stored in a capacitor is mathematically represented as

In this equation the energy stored is directly proportional to the the square of the potential across the capacitor
Now since capacitance is constant at
The energy stored can be evaluated at as


Hence the fraction of the energy stored in an initially uncharged capacitor is

Answer:
Propels in the opposite direction
Explanation:
Answer:
Decreases.
Explanation:
Electric potential energy is the potential energy which is associated with the configuration of points charge in a system and it is the result of conservative coulomb force.
When the negatively charge ion is at the position of the negative probe than its potential energy is positive when it is move towards the positive probe it's potential energy becomes negative due to the negative ion.
Therefore, potential energy is decreases when negative charge ion moves through the water from negative probe to positive probe.
<span>Answer:
sin(incidence)/sin(refraction) = n_refraction/n_incidence
sin(50) / sin(x) = 1.5 / 1
sin(50)/1.5 = sin(x)
sin(x) = 0.511
x = 30.71o
B]
50 degrees, same as the angle going in.
You can show that by reversing the steps in A.
sin(30.7)/sin(x) = 1/1.5
C]
The glass is 5 cm thick.
The reference angle = 30.7o
Tan(30.7) = displacement / thickness
Tan(30.7) = x / 5
5*sin(30.7) = x
x = 2.97 cm which is the displacement.</span>