Answer:
a) 4.485 kg b) 3.94 kg
Explanation:
since the maximum tension the line can stand is 44 N and for question a the speed is constant (acceleration must be zero since the velocity or speed is not changing), F(tension) = mass * acceleration due to gravity (g) .
44 = m * 9.81m/s^2
m = 44/9.81 = 4.485kg
b) F(tension) = ma + mg ( where a is the acceleration of the body and g is the acceleration of the gravity)
44 = m (a +g)
44 = m (1.37 + 9.81)
44/11.18 = m
m = 3.94 kg
Answer:
Resistivity ρ=1.12 x 10^-4 Ωm
Explanation:
ρ= RA/l, where R is resistance, A is cross sectional area and l is length
A=πr^2
Note Current is given R is proportion to temperature and inversely proportional to Current R=(20+273)/14*10^-2 =2000Ω
⇒ρ=R*πr^2/l all length in metre.
Answer:
The influence of diameter of the blood vessel on peripheral resistance is significant because resistance is inversely proportional to the fourth power of the diameter.
Explanation:
The influence of diameter of the blood vessel on peripheral resistance is significant because the relation between the peripheral resistance and the diameter is given as, resistance is inversely proportional to the fourth power of the diameter. Thus, with small increase or decrease in the value of diameter, the peripheral resistance may vary by a significant amount.
The Geosphere which is 99.94% of earths mass
Acceleration a = F/m = 20/4 = 5 m/s^2
v = a x t = 5 × 5 =25 m/s