It can't be less than 250 N or the cart wouldn't move at all. That means there is only 1 answer. It's between not enough info or 250 N. The answer is 250 N. If it was any more, there would be acceleration.
Cardiac, smooth, and skeletal. cardiac muscle cells are located in the walls of the heart and appear striated and are under involuntary control. smooth muscle fibers are located in walls of hollow visceral organs except the heart they also appear striated. skeleton muscle is found between bones and uses tendons to connect to the epimysium to the periosteum, or the outer covering of bone. skeletal muscle is shaped and adapted in many ways.
(please mark me brainliest!)
Answer:
Dark matter does not affect our view, humans can see through them.
Explanation:
They do not affect our view because we can see right through the (weakly interacting) dark matter, as they do not interact or interfere with electromagnetic force.
Dark matter are often invisible substances and are difficult to spot because they don't absorb or reflect light.
Incomplete Question.The Complete question is
The Earth spins on its axis and also orbits around the Sun. For this problem use the following constants. Mass of the Earth: 5.97 × 10^24 kg (assume a uniform mass distribution) Radius of the Earth: 6371 km Distance of Earth from Sun: 149,600,000 km
(i)Calculate the rotational kinetic energy of the Earth due to rotation about its axis, in joules.
(ii)What is the rotational kinetic energy of the Earth due to its orbit around the Sun, in joules?
Answer:
(i) KE= 2.56e29 J
(ii) KE= 2.65e33 J
Explanation:
i) Treating the Earth as a solid sphere, its moment of inertia about its axis is
I = (2/5)mr² = (2/5) * 5.97e24kg * (6.371e6m)²
I = 9.69e37 kg·m²
About its axis,
ω = 2π rads/day * 1day/24h * 1h/3600s
ω= 7.27e-5 rad/s,
so its rotational kinetic energy
KE = ½Iω² = ½ * 9.69e37kg·m² * (7.27e-5rad/s)²
KE= 2.56e29 J
(ii) About the sun,
I = mR²
I= 5.97e24kg * (1.496e11m)²
I= 1.336e47 kg·m²
and the angular velocity
ω = 2π rad/yr * 1yr/365.25day * 1day/24h * 1h/3600s
ω= 1.99e-7 rad/s
so
KE = ½ * 1.336e47kg·m² * (1.99e-7rad/s)²
KE= 2.65e33 J
Answer:
563.86 N
Explanation:
We know the buoyant force F = weight of air displaced by the balloon.
F = ρgV where ρ = density of air = 1.29 kg/m³, g = acceleration due to gravity = 9.8 m/s² and V = volume of balloon = 4πr/3 (since it is a sphere) where r = radius of balloon = 2.20 m
So, F = ρgV = ρg4πr³/3
substituting the values of the variables into the equation, we have
F = 1.29 kg/m³ × 9.8 m/s² × 4π × (2.20 m)³/3
= 1691.58 N/3
= 563.86 N